Please check your attendance using Blackboard!

Lecture I Mathematical Preliminaries and Notations

COSE215: Theory of Computation

Seunghoon Woo

Fall 2023

Contents

• Basic concepts of

- Sets
- Functions
- Graphs & Trees
- Proof techniques
- Alphabets & Strings
- Languages & Grammars

• A set is a collection of elements

If x is an element of set S, we can write this as follow

 $x \in S$

A set can be represented by naming all its elements

 $\bigstar S = \{x, y, z\}$

If the rules of the elements in the set are clear, we can use explicit notation

* $S = \{k: k > 0, k \text{ is even}\}$

- A set with no elements is called the empty set (or null set)
 \$\$\overline{\overlin}\overline{\overline{\overlin
- The size of a finite set is the number of elements in it

♦ If
$$S = \{x, y, z\}$$
, then $|S| = 3$

Set operations

- Union
 - $A \cup B = \{x : x \in A \text{ or } x \in B\}$
- Intersection

$$A \cap B = \{ x : x \in A \text{ and } x \in B \}$$

- Difference
 - $A B = \{x : x \in A \text{ and } x \notin B\}$
- Complementation

 $\bigstar \ \bar{A} = \{x \colon x \in U, x \notin A\}$

• Subset

- If every element of A is also an element of B, we write this as
 ★ A ⊆ B
- If $A \subseteq B$, but B contains an element not in A

♦ We say that A is a **proper** subset of B: $A \subset B$

• Disjoint

If A and B have no common element

***** Then the sets are said to be **disjoint**: $A \cap B = \emptyset$

• Powerset

The set of all subsets of a set S is called the powerset of S

• Denoted by 2^s

For example, if S is the set {a, b, c}, then its powerset is

•
$$2^{s} = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$$

• $|2^{s}| = 2^{|s|}$

Cartesian product

- Cartesian product of two sets
 - $A \times B = \{ (x, y) : x \in A \text{ and } y \in B \}$
 - * Ordered pairs

Functions

Function

- Rules for assigning elements in one set to a unique element in another set
 ♦ f: A → B
 - ✤ A = Domain
 - ✤ B = Range
- If the domain of f is all of A, we say that f is a **total function**
 - \clubsuit Otherwise, f is said to be a **partial function**

Graphs & Trees

• Graph

A graph consists of two finite sets: vertices and edges

* G = (V, E), where $V = \{v_1, v_2, ..., v_n\}$ and $E = \{e_1, e_2, ..., e_m\}$

 \clubsuit Each edge is a pair of vertices from V

•
$$e_i = (v_j, v_k)$$

• Directed graph (digraph)

Associate a direction with each edge

Graphs & Trees

• Walk

Sequence of edges

• Path

Walk with no repeated edges

• Simple path

Path with no vertices repeated

• Cycle

• A walk from v_i to itself with no repeated edges

Graphs & Trees

• Tree

- Directed graph with no cycles
- One vertex designated as "root"
 - Exactly one path from root to every other vertex

Leaves

Vertices without outgoing edges

Level

The number of edges in the path from the root to a vertex

Height

The largest level number of any vertex

• How can we prove the truth of a claim?

- Proof by induction
- Proof by contradiction

Proof by induction

- Truth of a few instances => Truth of a number of statements
- Suppose we want to prove P₁, P₂, ... to be true

 \bullet We first prove that it is true when $n = I(P_1)$

Assuming it is true for $n = k (P_k)$ and showing it is true for $n = k+1 (P_{k+1})$

=> Then, every Pi is true

- A binary tree is a tree in which no parent can have more than two children.
 Prove that a binary tree of height n has at most 2ⁿ leaves.
 - ✤ l(n): Maximum number of leaves
 - ♦ We want to show that $l(n) \le 2^n$

- A binary tree is a tree in which no parent can have more than two children.
 Prove that a binary tree of height n has at most 2ⁿ leaves.
 - I. When n = 0, $l(0) = 1 = 2^0$

- A binary tree is a tree in which no parent can have more than two children.
 Prove that a binary tree of height n has at most 2ⁿ leaves.
 - I. When n = 0, $l(0) = 1 = 2^0$
 - 2. Assumption: $l(i) \le 2^i$, for i = 0, 1, ..., n

- A binary tree is a tree in which no parent can have more than two children.
 Prove that a binary tree of height n has at most 2ⁿ leaves.
 - I. When n = 0, $l(0) = 1 = 2^0$
 - 2. Assumption: $l(i) \le 2^i$, for i = 0, 1, ..., n
 - 3. To get a binary tree of height n+1 from one of height n, at most, two leaves in place of each previous one
 - $l(n+1) \leq 2l(n)$

- A binary tree is a tree in which no parent can have more than two children.
 Prove that a binary tree of height n has at most 2ⁿ leaves.
 - I. When n = 0, $l(0) = 1 = 2^0$
 - 2. Assumption: $l(i) \le 2^i$, for i = 0, 1, ..., n
 - 3. To get a binary tree of height n+1 from one of height n, at most, two leaves in place of each previous one
 - $l(n+1) \leq 2l(n)$
 - 4. Therefore, $l(n + 1) \le 2l(n) \le 2 \times 2^n = 2^{n+1}$

Proof by contradiction

- To prove P is true, assume P is false
- If we arrive at a conclusion that we know is incorrect => P is true
- E.g., prove that $\sqrt{2}$ is an irrational number
 - I. Assume that $\sqrt{2}$ is a rational number: $\sqrt{2} = \frac{n}{m}$ (n, m are integers without a common factor)

Proof by contradiction

- To prove P is true, assume P is false
- If we arrive at a conclusion that we know is incorrect => P is true
- E.g., prove that $\sqrt{2}$ is an irrational number
 - I. Assume that $\sqrt{2}$ is a rational number: $\sqrt{2} = \frac{n}{m}$ (n, m are integers without a common factor)
 - 2. Then $2m^2 = n^2$, which implies that n is even (let n = 2k)

Proof by contradiction

- To prove P is true, assume P is false
- If we arrive at a conclusion that we know is incorrect => P is true
- E.g., prove that $\sqrt{2}$ is an irrational number
 - I. Assume that $\sqrt{2}$ is a rational number: $\sqrt{2} = \frac{n}{m}$ (n, m are integers without a common factor)

2. Then
$$2m^2 = n^2$$
, which implies that n is even (let n = 2k)

3. Then $2m^2 = 4k^2$, which implies that m is even => contradict

Proof by contradiction

- To prove P is true, assume P is false
- If we arrive at a conclusion that we know is incorrect => P is true
- E.g., prove that $\sqrt{2}$ is an irrational number
 - I. Assume that $\sqrt{2}$ is a rational number: $\sqrt{2} = \frac{n}{m}$ (n, m are integers without a common factor)
 - 2. Then $2m^2 = n^2$, which implies that n is even (let n = 2k)
 - 3. Then $2m^2 = 4k^2$, which implies that m is even => contradict
 - 4. Hence, $\sqrt{2}$ is an irrational number

Alphabets & Strings

• Alphabets (Σ)

- Finite, non-empty set of symbols
- E.g., $\Sigma = \{a, b, c\}$

• Strings

- Sequence of symbols
- E.g., "aaabbb", "abcbca"
- Empty string λ : $|\lambda| = 0$

Alphabets & Strings

• **\Sec:**

- A set of strings obtained by concatenating zero or more symbols from *S*
- E.g., if $\Sigma = \{a\}$, then $\Sigma^* = \{\lambda, a, aa, aaa, ...\}$
- Σ⁺
 - \blacksquare A set of strings obtained by concatenating **one** or more symbols from \varSigma

• E.g., if
$$\Sigma = \{a\}$$
, then $\Sigma^+ = \{a, aa, aaa, ...\}$

• $\Sigma^+ = \Sigma^* - \{\lambda\}$

• Language

- A set of character strings
- A subset of Σ^*
- A string in a language L is called a sentence of L

• E.g.,
$$\Sigma = \{a, b\}$$

• Then $\Sigma^* = \{\lambda, a, b, aa, ab, ba, bb, aaa, aab, ...\}$

 \clubsuit {a, aa, aaa} is a language for \varSigma

↔ L = {aⁿbⁿ: n ≥ 0} is also a language for Σ

Language operations

- Union, intersection, and difference of two languages
- Complementation

$$\clubsuit \ \overline{L} = \ \Sigma^* - L$$

Reverse

$$\clubsuit L^R = \{ w^R \colon w \in L \}$$

Concatenation

★ $L_1L_2 = \{xy: x \in L_1, y \in L_2\}$

Star-closure

★ $L^* = L^0 \cup L^1 \cup L^2 \dots (L^0 = \{\lambda\} \text{ and } L^i \text{ as } L \text{ concatenated with itself } i \text{ times})$

Positive-closure

 $\bigstar L^+ = L^1 \cup L^2 \dots$

• Grammar (G)

- A set of rules used to define the structure of the strings in a language
- G = (V, T, S, P)
 - ✤ V: Set of variables (non-empty)
 - T: Set of terminal symbols (non-empty; V and T are disjoint)
 - ↔ S: Start variable ($S \in V$)
 - P: Set of productions

Production rules

• Specify how the grammar transforms one string into another $x \to y$, where $x \in (V \cup T)^+$ and $y \in (V \cup T)^*$

• Given a string w = uxv

• If we apply $x \to y$ then a new string z is obtained: z = uyv

\bigstar This is written as $w \Rightarrow z$ (w **derives** z)

Shorthand representation

 $w \Rightarrow z \text{ (derives in one step)}$

$$• w \Rightarrow z \text{ (derives in one or more steps)}$$

$$\bigstar w \stackrel{*}{\Rightarrow} z \text{ (derives in zero or more steps)}$$

• Example grammar

• G = ({S}, {a, b}, S, P) with P given by

 $\bigstar S \to aSb \text{ and } S \to \lambda \ (S \to aSb \mid \lambda)$

We can derive the string "aabb"

 $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$

***** Therefore, $S \stackrel{*}{\Rightarrow} aabb$

• Grammar specifies a language

- The language of G
 - $\boldsymbol{\diamondsuit}$ Set of strings derived from the start symbol of G
 - \clubsuit Denoted by L(G)
 - \clubsuit For the previous example, L(G) can be defined as follows
 - $G = ({S}, {a, b}, S, P)$ with P given by
 - $S \rightarrow aSb$ and $S \rightarrow \lambda \ (S \rightarrow aSb \mid \lambda)$
 - $L(G) = \{a^n b^n : n \ge 0\}$

Next Lecture

• Finite automata

- Deterministic finite automata (DFA)
- Nondeterministic finite automata (NFA)

Appendix

• Equivalence relation

• To indicate that a pair (x, y) is in an equivalence relation

 $x \equiv y$

- Satisfy three rules
 - ***** Reflexivity rule $x \equiv x$ for all x
 - Symmetry rule if $x \equiv y$, then $y \equiv x$
 - ***** Transitivity rule if $x \equiv y$ and $y \equiv z$, then $x \equiv z$
- E.g., x ≡ y if and only if x mod 3 = y mod 3
 ★ x mod 3 = x mod 3
 - $x \mod 3 = y \mod 3 \text{ then } y \mod 3 = x \mod 3$
 - $x \mod 3 = y \mod 3$, and $y \mod 3 = z \mod 3$, then $x \mod 3 = z \mod 3$