Please check your attendance
using Blackboard!

Theory of Computation 1

Lecture |

Mathematical Preliminaries

and Notations
COSE215: Theory of Computation

Seunghoon Woo

Fall 2023

Theory of Computation

Contents

* Basic concepts of
" Sets
" Functions
" Graphs & Trees
" Proof techniques
" Alphabets & Strings

" L anguages & Grammars

Theory of Computation 3

Sets

* A set is a collection of elements

= |f x is an element of set S, we can write this as follow
“XES

" A set can be represented by naming all its elements
* 5= (x,2)

" If the rules of the elements in the set are clear, we can use explicit notation
* S={k:k >0,kiseven}

= A set with no elements is called the empty set (or null set)
+ 0=

" The size of a finite set is the number of elements in it

“«If S ={x,y,z} then |S| =3

Theory of Computation 4

Sets

* Set operations

= Union

“ AUB ={x:x € Aor x € B}
" |[ntersection

“ ANB ={x:x € Aand x € B}
= Difference

“ A—B={x:x € Aand x ¢ B}
* Complementation

* A={x:x € U,x ¢ A}

Theory of Computation

Sets

 Subset

" |f every element of A is also an element of B, we write this as
“ACB
" |If A € B,but B contains an element not in A

» We say that A is a proper subset of B: A C B
* Disjoint
= [f A and B have ho common element

% Then the sets are said to be disjoint: AN B = @

Theory of Computation 6

Sets

* Powerset

" The set of all subsets of a set S is called the powerset of S
¢ Denoted by 2%

¢ For example, if S is the set {a, b, c}, then its powerset is

+ 2° ={@,{a}, b}, (c}{a, b}, ta, c}, b, ¢} 1a, b, c}}
& 25| = 2Isl

Theory of Computation 4

Sets

* Cartesian product

= Cartesian product of two sets
“ AXB={(x,y):x € Aand y € B}

¢ Ordered pairs

Theory of Computation 8

Functions

* Function
» Rules for assigning elements in one set to a unique element in another set
¢ f:A > B
“* A = Domain
“* B = Range
" |f the domain of fis all of A, we say that f is a total function

¢ Otherwise, f'is said to be a partial function

Theory of Computation 9

Graphs & Trees

* Graph
= A graph consists of two finite sets: vertices and edges
G = (V,E),whereV ={v{,v,,...,v,}and E = {eq, ey, ..., €1, }
¢ Each edge is a pair of vertices fromV
- e = (vj, V)
* Directed graph (digraph)

= Associate a direction with each edge

Theory of Computation 10

Graphs & Trees

e Walk

* Sequence of edges

* Path J— ¢
" Walk with no repeated edges | i

« Simple path R Cln

= Path with no vertices repeated

* Cycle

= A walk from V; to itself with no repeated edges

Theory of Computation 11

Graphs & Trees

e Tree

" Directed graph with no cycles

* One vertex designated as “root” e
¢ Exactly one path from root to every other vertex
" Leaves
¢ Vertices without outgoing edges e
= Level o >~ Height = 3

¢ The number of edges in the path from the root
to a vertex

Height

‘ \
% The largest level number of any vertex { relevelsmes

|
|~

Theory of Computation 12

Proof techniques

* How can we prove the truth of a claim?

" Proof by induction

" Proof by contradiction

Theory of Computation 13

Proof techniques

* Proof by induction
®» Truth of a few instances => Truth of a number of statements

" Suppose we want to prove Pi, P2, ... to be true
**We first prove that it is true when n = | (P1)

“*Assuming it is true for n = k (Px) and showing it is true for n = k+1 (Pk+1)

=>Then, every Pi is true

Theory of Computation 14

Proof techniques

* Proof by induction: example

" A binary tree is a tree in which no parent can have more than two children.
Prove that a binary tree of height n has at most 2" leaves.
s l(n): Maximum number of leaves

“* We want to show that [(n) < 2™

Theory of Computation 15

Proof techniques

* Proof by induction: example

" A binary tree is a tree in which no parent can have more than two children.
Prove that a binary tree of height n has at most 2" leaves.
. Whenn =0, [(0)=1=2°

Theory of Computation 16

Proof techniques

* Proof by induction: example

" A binary tree is a tree in which no parent can have more than two children.
Prove that a binary tree of height n has at most 2" leaves.
. Whenn =0, [(0)=1=2°

2. Assumption: [(i) <2}, fori=0,1,..,n

Theory of Computation 17

Proof techniques

* Proof by induction: example

" A binary tree is a tree in which no parent can have more than two children.
Prove that a binary tree of height n has at most 2" leaves.
. Whenn=0, [(0)=1=2"
2. Assumption: [(i) < 2t fori=20,1,..,n

3. To get a binary tree of height n+1| from one of height n, at most, two leaves in place of
each previous one

e I(n+1) <2l(n)

Theory of Computation 18

Proof techniques

* Proof by induction: example

" A binary tree is a tree in which no parent can have more than two children.
Prove that a binary tree of height n has at most 2" leaves.
. Whenn=0, [(0)=1=2"
2. Assumption: [(i) < 2t fori=20,1,..,n

3. To get a binary tree of height n+1| from one of height n, at most, two leaves in place of
each previous one

e I(n+1) <2l(n)
4. Therefore, ((n+1) < 2l(n) <2 x 2" =2ntt

Theory of Computation 19

Proof techniques

* Proof by contradiction
" To prove P is true, assume P is false
= |f we arrive at a conclusion that we know is incorrect => P is true

= E.g., prove that/2 is an irrational number

n
|. Assume that V2 is a rational number: Y2 = — (n, m are integers without a common factor)
m

Theory of Computation 20

Proof techniques

* Proof by contradiction
" To prove P is true, assume P is false
= |f we arrive at a conclusion that we know is incorrect => P is true

= E.g., prove that/2 is an irrational number

n
|. Assume that V2 is a rational number: Y2 = — (n, m are integers without a common factor)
m

2. Then 2m? = n*, which implies that n is even (let n = 2k)

Theory of Computation 21

Proof techniques

* Proof by contradiction
" To prove P is true, assume P is false
= |f we arrive at a conclusion that we know is incorrect => P is true

= E.g., prove that/2 is an irrational number

n

|. Assume that V2 is a rational number: Y2 = — (n, m are integers without a common factor)
m

2. Then 2m? = n*, which implies that n is even (let n = 2k)

3. Then 2m? = 4k*, which implies that m is even => contradict

Theory of Computation 22

Proof techniques

* Proof by contradiction
" To prove P is true, assume P is false
= |f we arrive at a conclusion that we know is incorrect => P is true

= E.g., prove that/2 is an irrational number
|. Assume that V2 is a rational number: V2 = ki (n, m are integers without a common factor)
2. Then 2m? = n*, which implies that n is even 1(?Ilet n = 2k)
3. Then 2m? = 4k*, which implies that m is even => contradict

4. Hence, /2 is an irrational number

Theory of Computation 23

Alphabets & Strings

* Alphabets ()
* Finite, non-empty set of symbols
»Eg, 2={a,b,c}

* Strings
" Sequence of symbols

" E.g.,"aaabbb”,“abcbca”
" Empty string 2: [A] =0

Theory of Computation 24

Alphabets & Strings

° z*
" A set of strings obtained by concatenating zero or more symbols from X~
" Eg,if X ={a},then 2* = {4,qa,aaq,aaaq, ...}

° z+
= A set of strings obtained by concatenating one or more symbols from X
» Eg,if Y = {a},then X" = {qa,aaq,aaaq, ...}
XY =X — {1}

Theory of Computation 25

Languages & grammars

* Language
" A set of character strings
= A subset of X~
" A string in a language L is called a sentence of L
" Eg,X ={a,b}
% Then 2* = {A,a,b,aa,ab, ba, bb, aaa, aab, ...}

% {a,aa,aaa} is a language for X

L ={a"b™:n = 0} is also a language for X

Theory of Computation 26

Languages & grammars

* Language operations
= Union, intersection, and difference of two languages
* Complementation
S L=3X"-—1L
" Reverse
< LR = (whiw € L}
= Concatenation
o LiL, ={xy:x € L1,y € L,}
= Star-closure
S L*=10UL'Ul?..(L° = {1} and L! as L concatenated with itself i times)
" Positive-closure
S LT=LtulL?..

Theory of Computation 27

Languages & grammars

* Grammar (G)

" A set of rules used to define the structure of the strings in a language
*G=(VT,S,P)

¢ V: Set of variables (non-empty)

¢ T: Set of terminal symbols (non-empty;V and T are disjoint)

¢ S: Start variable (S € V)

¢ P: Set of productions

Theory of Computation 28

Languages & grammars

* Production rules
" Specify how the grammar transforms one string into another
% x> y,wherex€e WUT) andy e (WUT)*
" Given a string w = uxv

“* If we apply x — y then a new string z is obtained: z = uyv

¢ This is written as w = z (w derives z)

= Shorthand representation

“* w = z (derives in one step)
TS + . .
** w = z (derives in one or more steps)

*
¢ W = z (derives in zero or more steps)

Theory of Computation 29

Languages & grammars

* Example grammar
» G = ({S}, {a, b}, S, P) with P given by
“S—>aSbhandS->A(S—=>aSb|A)
" We can derive the string “aabb”

< S = aSb = aaSbb = aabb

** Therefore, S :*> aabb

Theory of Computation 30

Languages & grammars

* Grammar specifies a language

" The language of G
* Set of strings derived from the start symbol of G
¢ Denoted by L(G)
“* For the previous example, L(G) can be defined as follows
* G = ({S},{a, b}, S, P) with P given by
e S—>aSbhandS—->A(S—>aSb| 1)
.« L(G) = {a™h™n = 0}

Theory of Computation 31

Next Lecture

 Finite automata

* Deterministic finite automata (DFA)

* Nondeterministic finite automata (NFA)

Theory of Computation 32

Appendix

* Equivalence relation

* To indicate that a pair (X, y) is in an equivalence relation

S X=Y
= Satisfy three rules
¢ Reflexivity rule x = x forall x
% Symmetry rule ifx=y,theny =x
* Transitivity rule ifx=yandy = z,thenx =z

*" E.g, x = yifand only if x mod 3 = y mod 3
% xmod 3 = x mod 3
% xmod 3 = ymod 3 thenymod 3 = x mod 3
% xmod 3 = ymod 3,and y mod 3 = zmod 3,then x mod 3 = z mod 3

Theory of Computation 33

