
Please check your attendance
using Blackboard!

1Theory of Computation

Lecture 1

Mathematical Preliminaries
and Notations

COSE215: Theory of Computation

Seunghoon Woo

Fall 2023

2Theory of Computation

Contents

• Basic concepts of

▪ Sets

▪ Functions

▪ Graphs & Trees

▪ Proof techniques

▪ Alphabets & Strings

▪ Languages & Grammars

Theory of Computation 3

Sets

• A set is a collection of elements

▪ If x is an element of set S, we can write this as follow

❖

▪ A set can be represented by naming all its elements

❖

▪ If the rules of the elements in the set are clear, we can use explicit notation

❖

▪ A set with no elements is called the empty set (or null set)

❖

▪ The size of a finite set is the number of elements in it

❖ If , then

Theory of Computation 4

𝑥 ∈ 𝑆

𝑆 = {𝑥, 𝑦, 𝑧}

𝑆 = {𝑘: 𝑘 > 0, 𝑘 is even}

∅ = {}

𝑆 = {𝑥, 𝑦, 𝑧} 𝑆 = 3

Sets

• Set operations

▪ Union

❖

▪ Intersection

❖

▪ Difference

❖

▪ Complementation

❖

Theory of Computation 5

𝐴 ∪ 𝐵 = {𝑥: 𝑥 ∈ 𝐴 𝑜𝑟 𝑥 ∈ 𝐵}

𝐴 ∩ 𝐵 = {𝑥: 𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 ∈ 𝐵}

𝐴 − 𝐵 = {𝑥: 𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 ∉ 𝐵}

A B

A B

A B

ҧ𝐴 = {𝑥: 𝑥 ∈ 𝑈, 𝑥 ∉ 𝐴}
A

U

Sets

• Subset

▪ If every element of A is also an element of B, we write this as

❖

▪ If , but B contains an element not in A

❖We say that A is a proper subset of B:

• Disjoint

▪ If A and B have no common element

❖Then the sets are said to be disjoint:

Theory of Computation 6

𝐴 ⊆ 𝐵

𝐴 ⊆ 𝐵

𝐴 ⊂ 𝐵

𝐴 ∩ 𝐵 = ∅

Sets

• Powerset

▪ The set of all subsets of a set S is called the powerset of S

❖ Denoted by

❖ For example, if S is the set {a, b, c}, then its powerset is

•

❖

Theory of Computation 7

2𝑠

2𝑠 = {∅, 𝑎 , 𝑏 , 𝑐 , 𝑎, 𝑏 , 𝑎, 𝑐 , 𝑏, 𝑐 , 𝑎, 𝑏, 𝑐 }

2𝑠 = 2 𝑠

Sets

• Cartesian product

▪ Cartesian product of two sets

❖

❖ Ordered pairs

Theory of Computation 8

𝐴 × 𝐵 = { 𝑥, 𝑦 : 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵}

Functions

• Function

▪ Rules for assigning elements in one set to a unique element in another set

❖

❖A = Domain

❖ B = Range

▪ If the domain of f is all of A, we say that f is a total function

❖ Otherwise, f is said to be a partial function

Theory of Computation 9

𝑓: 𝐴 → 𝐵

Graphs & Trees

• Graph

▪ A graph consists of two finite sets: vertices and edges

❖

❖ Each edge is a pair of vertices from V

•

• Directed graph (digraph)

▪ Associate a direction with each edge

Theory of Computation 10

𝐺 = 𝑉, 𝐸 ,where 𝑉 = 𝑣1, 𝑣2, … , 𝑣𝑛 and 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑚}

𝑒𝑖 = (𝑣𝑗 , 𝑣𝑘)

𝑒1

𝑒2 𝑒3

𝑒4

Graphs & Trees

• Walk

▪ Sequence of edges

• Path

▪ Walk with no repeated edges

• Simple path

▪ Path with no vertices repeated

• Cycle

▪ A walk from to itself with no repeated edges

Theory of Computation 11

𝑣𝑖

𝑒1

𝑒2 𝑒3

𝑒4

Graphs & Trees

• Tree

▪ Directed graph with no cycles

▪ One vertex designated as “root”

❖ Exactly one path from root to every other vertex

▪ Leaves

❖ Vertices without outgoing edges

▪ Level

❖ The number of edges in the path from the root

to a vertex

▪ Height

❖The largest level number of any vertex

Theory of Computation 12

Proof techniques

• How can we prove the truth of a claim?

▪ Proof by induction

▪ Proof by contradiction

Theory of Computation 13

Proof techniques

• Proof by induction

▪ Truth of a few instances => Truth of a number of statements

▪ Suppose we want to prove P1, P2, … to be true

❖We first prove that it is true when n = 1 (P1)

❖Assuming it is true for n = k (Pk) and showing it is true for n = k+1 (Pk+1)

=> Then, every Pi is true

Theory of Computation 14

Proof techniques

• Proof by induction: example

▪ A binary tree is a tree in which no parent can have more than two children.

Prove that a binary tree of height 𝑛 has at most 2𝑛 leaves.

❖ 𝑙 𝑛 : Maximum number of leaves

❖We want to show that 𝑙 𝑛 ≤ 2𝑛

Theory of Computation 15

Proof techniques

• Proof by induction: example

▪ A binary tree is a tree in which no parent can have more than two children.

Prove that a binary tree of height 𝑛 has at most 2𝑛 leaves.

1. When 𝑛 = 0, 𝑙 0 = 1 = 20

Theory of Computation 16

Proof techniques

• Proof by induction: example

▪ A binary tree is a tree in which no parent can have more than two children.

Prove that a binary tree of height 𝑛 has at most 2𝑛 leaves.

1. When 𝑛 = 0, 𝑙 0 = 1 = 20

2. Assumption: 𝑙(𝑖) ≤ 2𝑖 , for 𝑖 = 0, 1, … , 𝑛

Theory of Computation 17

Proof techniques

• Proof by induction: example

▪ A binary tree is a tree in which no parent can have more than two children.

Prove that a binary tree of height 𝑛 has at most 2𝑛 leaves.

1. When 𝑛 = 0, 𝑙 0 = 1 = 20

2. Assumption: 𝑙(𝑖) ≤ 2𝑖 , for 𝑖 = 0, 1, … , 𝑛

3. To get a binary tree of height 𝑛+1 from one of height 𝑛, at most, two leaves in place of

each previous one

• 𝑙 𝑛 + 1 ≤ 2𝑙(𝑛)

Theory of Computation 18

Proof techniques

• Proof by induction: example

▪ A binary tree is a tree in which no parent can have more than two children.

Prove that a binary tree of height 𝑛 has at most 2𝑛 leaves.

1. When 𝑛 = 0, 𝑙 0 = 1 = 20

2. Assumption: 𝑙(𝑖) ≤ 2𝑖 , for 𝑖 = 0, 1, … , 𝑛

3. To get a binary tree of height 𝑛+1 from one of height 𝑛, at most, two leaves in place of

each previous one

• 𝑙 𝑛 + 1 ≤ 2𝑙(𝑛)

4. Therefore, 𝑙 𝑛 + 1 ≤ 2𝑙 𝑛 ≤ 2 × 2𝑛 = 2𝑛+1

Theory of Computation 19

Proof techniques

• Proof by contradiction

▪ To prove P is true, assume P is false

▪ If we arrive at a conclusion that we know is incorrect => P is true

▪ E.g., prove that is an irrational number

1. Assume that is a rational number: (n, m are integers without a common factor)

Theory of Computation 20

2

2 2 =
𝑛

𝑚

Proof techniques

• Proof by contradiction

▪ To prove P is true, assume P is false

▪ If we arrive at a conclusion that we know is incorrect => P is true

▪ E.g., prove that is an irrational number

1. Assume that is a rational number: (n, m are integers without a common factor)

2. Then , which implies that n is even (let n = 2k)

Theory of Computation 21

2

2 2 =
𝑛

𝑚
2𝑚2 = 𝑛2

Proof techniques

• Proof by contradiction

▪ To prove P is true, assume P is false

▪ If we arrive at a conclusion that we know is incorrect => P is true

▪ E.g., prove that is an irrational number

1. Assume that is a rational number: (n, m are integers without a common factor)

2. Then , which implies that n is even (let n = 2k)

3. Then , which implies that m is even => contradict

Theory of Computation 22

2

2 2 =
𝑛

𝑚
2𝑚2 = 𝑛2

2𝑚2 = 4𝑘2

Proof techniques

• Proof by contradiction

▪ To prove P is true, assume P is false

▪ If we arrive at a conclusion that we know is incorrect => P is true

▪ E.g., prove that is an irrational number

1. Assume that is a rational number: (n, m are integers without a common factor)

2. Then , which implies that n is even (let n = 2k)

3. Then , which implies that m is even => contradict

4. Hence, is an irrational number

Theory of Computation 23

2

2 2 =
𝑛

𝑚
2𝑚2 = 𝑛2

2𝑚2 = 4𝑘2

2

Alphabets & Strings

• Alphabets (𝚺)

▪ Finite, non-empty set of symbols

▪ E.g.,

• Strings

▪ Sequence of symbols

▪ E.g., “aaabbb”, “abcbca”

▪ Empty string : = 0

Theory of Computation 24

Σ = {𝑎, 𝑏, 𝑐}

𝜆 𝜆

Alphabets & Strings

• 𝚺*

▪ A set of strings obtained by concatenating zero or more symbols from 𝛴

▪ E.g., if 𝛴 = {𝑎}, then 𝛴∗ = 𝜆, 𝑎, 𝑎𝑎, 𝑎𝑎𝑎,…

• 𝚺+

▪ A set of strings obtained by concatenating one or more symbols from 𝛴

▪ E.g., if 𝛴 = {𝑎}, then 𝛴+ = 𝑎, 𝑎𝑎, 𝑎𝑎𝑎,…

▪ 𝚺+ = 𝚺∗ − {𝜆}

Theory of Computation 25

Languages & grammars

• Language

▪ A set of character strings

▪ A subset of 𝛴∗

▪ A string in a language L is called a sentence of L

▪ E.g., 𝛴 = {𝑎, 𝑏}

❖Then 𝛴∗ = 𝜆, 𝑎, 𝑏, 𝑎𝑎, 𝑎𝑏, 𝑏𝑎, 𝑏𝑏, 𝑎𝑎𝑎, 𝑎𝑎𝑏,…

❖ 𝑎, 𝑎𝑎, 𝑎𝑎𝑎 is a language for 𝛴

❖ 𝐿 = {𝑎𝑛𝑏𝑛: 𝑛 ≥ 0} is also a language for 𝛴

Theory of Computation 26

Languages & grammars

• Language operations

▪ Union, intersection, and difference of two languages

▪ Complementation

❖ ത𝐿 = Σ∗ − 𝐿

▪ Reverse

❖ 𝐿𝑅 = {𝑤𝑅: 𝑤 ∈ 𝐿}

▪ Concatenation

❖ 𝐿1𝐿2 = {𝑥𝑦: 𝑥 ∈ 𝐿1, 𝑦 ∈ 𝐿2}

▪ Star-closure

❖ 𝐿∗ = 𝐿0 ∪ 𝐿1 ∪ 𝐿2… (𝐿0 = 𝜆 and 𝐿𝑖 as 𝐿 concatenated with itself 𝑖 times)

▪ Positive-closure

❖ 𝐿+ = 𝐿1 ∪ 𝐿2…

Theory of Computation 27

Languages & grammars

• Grammar (G)

▪ A set of rules used to define the structure of the strings in a language

▪ G = (V, T, S, P)

❖V: Set of variables (non-empty)

❖T: Set of terminal symbols (non-empty; V and T are disjoint)

❖ S: Start variable (𝑆 ∈ 𝑉)

❖ P: Set of productions

Theory of Computation 28

Languages & grammars

• Production rules

▪ Specify how the grammar transforms one string into another

❖ 𝑥 → 𝑦,where 𝑥 ∈ 𝑉 ∪ 𝑇 + and 𝑦 ∈ 𝑉 ∪ 𝑇 ∗

▪ Given a string 𝑤 = 𝑢𝑥𝑣

❖ If we apply 𝑥 → 𝑦 then a new string 𝑧 is obtained: 𝑧 = 𝑢𝑦𝑣

❖This is written as 𝑤 ⇒ 𝑧 (w derives z)

▪ Shorthand representation

❖ 𝑤 ⇒ 𝑧 (derives in one step)

❖ 𝑤 ⇒
+
𝑧 (derives in one or more steps)

❖ 𝑤 ⇒
∗
𝑧 (derives in zero or more steps)

Theory of Computation 29

Languages & grammars

• Example grammar

▪ G = ({S}, {a, b}, S, P) with P given by

❖ 𝑆 → 𝑎𝑆𝑏 and S → 𝜆 (𝑆 → 𝑎𝑆𝑏 | 𝜆)

▪ We can derive the string “aabb”

❖ 𝑆 ⇒ 𝑎𝑆𝑏 ⇒ 𝑎𝑎𝑆𝑏𝑏 ⇒ 𝑎𝑎𝑏𝑏

❖Therefore, 𝑆 ⇒
∗
𝑎𝑎𝑏𝑏

Theory of Computation 30

Languages & grammars

• Grammar specifies a language

▪ The language of G

❖ Set of strings derived from the start symbol of G

❖ Denoted by L(G)

❖ For the previous example, L(G) can be defined as follows

• G = ({S}, {a, b}, S, P) with P given by

• 𝑆 → 𝑎𝑆𝑏 and S → 𝜆 (𝑆 → 𝑎𝑆𝑏 | 𝜆)

• 𝐿 𝐺 = {𝑎𝑛𝑏𝑛: 𝑛 ≥ 0}

Theory of Computation 31

Next Lecture

• Finite automata

▪ Deterministic finite automata (DFA)

▪ Nondeterministic finite automata (NFA)

Theory of Computation 32

Appendix

• Equivalence relation

▪ To indicate that a pair (x, y) is in an equivalence relation

❖

▪ Satisfy three rules

❖ Reflexivity rule

❖ Symmetry rule

❖Transitivity rule

▪ E.g.,

❖

❖

❖

Theory of Computation 33

𝑥 ≡ 𝑦

𝑥 ≡ 𝑥 for all 𝑥

if 𝑥 ≡ 𝑦, then 𝑦 ≡ 𝑥

if 𝑥 ≡ 𝑦 and 𝑦 ≡ 𝑧, then 𝑥 ≡ 𝑧

𝑥 ≡ 𝑦 if and only if 𝑥 𝑚𝑜𝑑 3 = 𝑦 𝑚𝑜𝑑 3

𝑥 𝑚𝑜𝑑 3 = 𝑥 𝑚𝑜𝑑 3

𝑥 𝑚𝑜𝑑 3 = 𝑦 𝑚𝑜𝑑 3 then 𝑦 𝑚𝑜𝑑 3 = 𝑥 𝑚𝑜𝑑 3

𝑥 𝑚𝑜𝑑 3 = 𝑦 𝑚𝑜𝑑 3, and 𝑦 𝑚𝑜𝑑 3 = 𝑧 𝑚𝑜𝑑 3, then 𝑥 𝑚𝑜𝑑 3 = 𝑧 𝑚𝑜𝑑 3

