Please check your attendance using Blackboard!

Lecture 1 Mathematical Preliminaries and Notations

COSE215: Theory of Computation

Seunghoon Woo

Fall 2023

Contents

• **Basic concepts of**

- Sets
- Functions
- **Example 3 Graphs & Trees**
- **Proof techniques**
- **E** Alphabets & Strings
- **Example 1** Languages & Grammars

• **A set is a collection of elements**

▪ If *x* is an element of set *S,* we can write this as follow

 $\mathbf{\hat{x}} \times \mathbf{\hat{z}} \in S$

■ A set can be represented by naming all its elements

 $\mathcal{S} = \{x, y, z\}$

If the rules of the elements in the set are clear, we can use explicit notation

• $S = \{k : k > 0, k \text{ is even}\}$

- A set with no elements is called the empty set (or null set) ❖ ∅ = {}
- The size of a finite set is the number of elements in it

$$
∴
$$
 If $S = {x, y, z}$, then $|S| = 3$

• **Set operations**

- Union
	- $\mathbf{\hat{L}}$ A ∪ B = {x: x ∈ A or x ∈ B}
- Intersection
	- \triangleq A ∩ B = {x: x ∈ A and x ∈ B}
- Difference
	- $\triangleq A B = \{x : x \in A \text{ and } x \notin B\}$
- **EXECOMPLEMENTATION**

 $\stackrel{\bullet}{\bullet} \stackrel{\overline{A}}{=} \{x : x \in U, x \notin A\}$

• **Subset**

- **If every element of A is also an element of B, we write this as** \triangleq A ⊆ B
- \blacksquare If $A \subseteq B$, but B contains an element not in A

 \triangle We say that A is a **proper** subset of B: $A \subseteq B$

• **Disjoint**

E If A and B have no common element

 \triangle Then the sets are said to be **disjoint**: $A \cap B = \emptyset$

• **Powerset**

- The set of all subsets of a set S is called the powerset of S
	- \triangleleft Denoted by 2^s
	- ❖ For example, if S is the set {a, b, c}, then its powerset is
	- $2^s = {\emptyset, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}$ \div |2^s| = 2^{|s}

• **Cartesian product**

- **Exercise Cartesian product of two sets**
	- \triangleleft \times B = { (x, y) : $x \in A$ and $y \in B$ }
	- ❖ **Ordered** pairs

Functions

• **Function**

- Rules for assigning elements in one set to a unique element in another set $\mathbf{\hat{\cdot}\cdot f}:A\rightarrow B$
	- ❖ A = **Domain**
	- ❖ B = **Range**
- If the domain of f is all of A, we say that f is a **total function**
	- ❖ Otherwise, *f* is said to be a **partial function**

Graphs & Trees

• **Graph**

▪ A graph consists of two finite sets: **vertices** and **edges**

 $\triangleleft G = (V, E)$, where $V = \{v_1, v_2, ..., v_n\}$ and $E = \{e_1, e_2, ..., e_m\}$

❖ Each edge is a pair of vertices from V

$$
\bullet \ \ e_i = (v_j,v_k)
$$

• **Directed graph (digraph)**

Exerciate a direction with each edge

Graphs & Trees

• **Walk**

Exercise Sequence of edges

• **Path**

■ Walk with no repeated edges

• **Simple path**

■ Path with no vertices repeated

• **Cycle**

 \blacksquare A walk from v_i to itself with no repeated edges

Graphs & Trees

• **Tree**

- **E** Directed graph with no cycles
- One vertex designated as "**root**"
	- ❖ Exactly one path from root to every other vertex

▪ **Leaves**

❖ Vertices without outgoing edges

▪ **Level**

❖ The number of edges in the path from the root to a vertex

▪ **Height**

❖The largest level number of any vertex

• **How can we prove the truth of a claim?**

- **Proof by induction**
- **Proof by contradiction**

• **Proof by induction**

- **Truth of a few instances** \Rightarrow **Truth of a number of statements**
- **E** Suppose we want to prove P_1, P_2, \ldots to be true

 \dots We first prove that it is true when $n = 1$ (P₁)

Example 3 Assuming it is true for $n = k$ (P_k) and showing it is true for $n = k+1$ (P_{k+1})

=> Then, every Pi is true

- A binary tree is a tree in which no parent can have more than two children. Prove that a binary tree of height n has at most 2^n leaves.
	- ❖ $l(n)$: Maximum number of leaves
	- ❖ We want to show that $l(n) \leq 2^n$

- A binary tree is a tree in which no parent can have more than two children. Prove that a binary tree of height n has at most 2^n leaves.
	- 1. When $n = 0$, $l(0) = 1 = 2^0$

- A binary tree is a tree in which no parent can have more than two children. Prove that a binary tree of height n has at most 2^n leaves.
	- 1. When $n = 0$, $l(0) = 1 = 2^0$
	- 2. Assumption: $l(i) \leq 2^i$, for $i = 0, 1, ..., n$

- A binary tree is a tree in which no parent can have more than two children. Prove that a binary tree of height n has at most 2^n leaves.
	- 1. When $n = 0$, $l(0) = 1 = 2^0$
	- 2. Assumption: $l(i) \leq 2^i$, for $i = 0, 1, ..., n$
	- 3. To get a binary tree of height $n+1$ from one of height n , at most, two leaves in place of each previous one
		- $l(n + 1) \leq 2l(n)$

- A binary tree is a tree in which no parent can have more than two children. Prove that a binary tree of height n has at most 2^n leaves.
	- 1. When $n = 0$, $l(0) = 1 = 2^0$
	- 2. Assumption: $l(i) \leq 2^i$, for $i = 0, 1, ..., n$
	- 3. To get a binary tree of height $n+1$ from one of height n , at most, two leaves in place of each previous one
		- $l(n + 1) \leq 2l(n)$
	- 4. Therefore, $l(n + 1) \leq 2l(n) \leq 2 \times 2^{n} = 2^{n+1}$

• **Proof by contradiction**

- To prove P is true, assume P is false
- \blacksquare If we arrive at a conclusion that we know is incorrect \uparrow \triangleright P is true
- \blacktriangleright E.g., prove that $\sqrt{2}$ is an irrational number

1. Assume that $\sqrt{2}$ is a rational number: $\sqrt{2} = \frac{1}{2}$ (n, m are integers without a common factor) \overline{n} \overline{m}

• **Proof by contradiction**

- To prove P is true, assume P is false
- \blacksquare If we arrive at a conclusion that we know is incorrect \uparrow \triangleright P is true
- \blacktriangleright E.g., prove that $\sqrt{2}$ is an irrational number
	- 1. Assume that $\sqrt{2}$ is a rational number: $\sqrt{2} = \frac{1}{2}$ (n, m are integers without a common factor) \overline{n} \overline{m}
	- 2. Then $2m^2 = n^2$, which implies that n is even (let n = 2k)

• **Proof by contradiction**

- To prove P is true, assume P is false
- \blacksquare If we arrive at a conclusion that we know is incorrect \uparrow \triangleright P is true
- \blacktriangleright E.g., prove that $\sqrt{2}$ is an irrational number
	- 1. Assume that $\sqrt{2}$ is a rational number: $\sqrt{2} = \frac{1}{2}$ (n, m are integers without a common factor) \overline{n} \overline{m}
	- 2. Then $2m^2 = n^2$, which implies that n is even (let n = 2k)
	- 3. Then $2m^2 = 4k^2$, which implies that m is even \Rightarrow contradict

• **Proof by contradiction**

- To prove P is true, assume P is false
- \blacksquare If we arrive at a conclusion that we know is incorrect \uparrow \triangleright P is true
- \blacktriangleright E.g., prove that $\sqrt{2}$ is an irrational number
	- 1. Assume that $\sqrt{2}$ is a rational number: $\sqrt{2} = \frac{1}{2}$ (n, m are integers without a common factor) \overline{n} \overline{m}
	- 2. Then $2m^2 = n^2$, which implies that n is even (let n = 2k)
	- 3. Then $2m^2 = 4k^2$, which implies that m is even \Rightarrow contradict
	- 4. $\,$ Hence, $\sqrt{2}\,$ is an irrational number

Alphabets & Strings

\cdot **Alphabets (** Σ **)**

- Finite, non-empty set of symbols
- **E.g.,** $\Sigma = \{a, b, c\}$

• **Strings**

- **Exercise Sequence of symbols**
- E.g., "aaabbb", "abcbca"
- **Empty string** λ **:** $|\lambda| = 0$

Alphabets & Strings

• *****

- \blacksquare A set of strings obtained by concatenating **zero** or more symbols from Σ
- **■** E.g., if $\Sigma = \{a\}$, then $\Sigma^* = \{\lambda, a, aa, aaa, ...$
- $\cdot \Sigma^+$
	- A set of strings obtained by concatenating **one** or more symbols from Σ

• E.g., if
$$
\Sigma = \{a\}
$$
, then $\Sigma^+ = \{a, aa, aaa, ...\}$

 \bullet $\Sigma^+ = \Sigma^* - {\lambda}$

• **Language**

- A set of character strings
- **A** subset of \mathbb{Z}^*
- A string in a language L is called a **sentence** of L

$$
\blacksquare \mathsf{E.g.}, \Sigma = \{a, b\}
$$

 $\mathbf{\hat{S}}^*$ Then $\Sigma^* = {\lambda, a, b, aa, ab, ba, bb, aaa, aab, ...}$

 $\mathbf{\hat{b}} \{a, aa, aaa\}$ is a language for Σ

 $\mathbf{\hat{B}} L = \{a^n b^n : n \geq 0\}$ is also a language for Σ

• **Language operations**

- **Union, intersection, and difference of two languages**
- Complementation

 \bullet $\overline{L} = \Sigma^* - L$

■ Reverse

$$
\clubsuit L^R = \{w^R : w \in L\}
$$

■ Concatenation

 $\mathbf{\hat{z}} L_1 L_2 = \{xy : x \in L_1, y \in L_2\}$

■ Star-closure

 $\mathbf{\hat{B}}$ $L^* = L^0 \cup L^1 \cup L^2 ...$ ($L^0 = {\lambda}$ and L^i as L concatenated with itself *i* times)

• Positive-closure

 $\bullet L^+ = L^1 \cup L^2 ...$

• **Grammar (G)**

- A set of rules used to define the structure of the strings in a language
- \blacksquare G = (V, T, S, P)
	- ❖V: Set of variables (non-empty)
	- ❖ T: Set of terminal symbols (non-empty; V and T are disjoint)
	- \div S: Start variable (S ∈ V)
	- ❖ P: Set of productions

• **Production rules**

E Specify how the grammar transforms one string into another $\mathbf{\hat{L}} \times \mathbf{x} \rightarrow \mathbf{y}$, where $\mathbf{x} \in (V \cup T)^+$ and $\mathbf{y} \in (V \cup T)^*$

• Given a string $w = uxv$

❖ If we apply $x \rightarrow y$ then a new string z is obtained: $z = uyv$

❖ This is written as $w \Rightarrow z$ (w **derives** z)

E Shorthand representation

❖ $W \Rightarrow Z$ (derives in one step) ❖ ⇒ + z (derives in one or more steps) ❖ ⇒ ∗ z (derives in zero or more steps)

• **Example grammar**

 \blacksquare G = ({S}, {a, b}, S, P) with P given by

 $\mathbf{\hat{\cdot}} \mathbf{S} \rightarrow aSb$ and $S \rightarrow \lambda (S \rightarrow aSb | \lambda)$

■ We can derive the string "aabb"

 \mathcal{S} ⇒ aSb ⇒ $aasbb$ ⇒ $aabb$ ∗

 \clubsuit Therefore, $S \Rightarrow$ aabb

• **Grammar specifies a language**

- The language of G
	- ❖ Set of strings derived from the start symbol of G
	- ❖ Denoted by L(G)
	- ❖ For the previous example, L(G) can be defined as follows
		- $G = (\{S\}, \{a, b\}, S, P)$ with P given by
			- $S \rightarrow aSb$ and $S \rightarrow \lambda (S \rightarrow aSb | \lambda)$
		- $L(G) = \{a^n b^n : n \ge 0\}$

Next Lecture

• **Finite automata**

- **Deterministic finite automata (DFA)**
- **E** Nondeterministic finite automata (NFA)

Appendix

• **Equivalence relation**

 \blacksquare To indicate that a pair (x, y) is in an equivalence relation

 \Leftrightarrow $x \equiv y$

- **Exercise Satisfy three rules**
	- ❖ Reflexivity rule $x \equiv x$ for all x
	- ❖ Symmetry rule if $x \equiv y$, then $y \equiv x$
	- \triangleleft Transitivity rule if $x \equiv y$ and $y \equiv z$, then $x \equiv z$
- **E.g.,** $x \equiv y$ if and only if $x \mod 3 = y \mod 3$ $\div x \mod 3 = x \mod 3$
	- \hat{x} x mod 3 = y mod 3 then y mod 3 = x mod 3
	- \hat{x} x mod 3 = y mod 3, and y mod 3 = z mod 3, then x mod 3 = z mod 3