Lecture 10 Other Models of Turing Machines

COSE215: Theory of Computation

Seunghoon Woo

Fall 2023

Contents

• Other models of Turing machines

Other models

- A standard Turing machine is not the only possible one
- Turing machines with more complex storage
 - TMs with a Stay-option
 - Multitape TMs
 - Multitrack TMs
 - Nondeterministic TMs
 - But these are equivalent with standard Turing machines!

• A Turing machine can have a Stay-option

- Possible movements of the head in a standard Turing machine
 Left and Right
- Possible movements of the head in a Turing machine with a Stay-option
 - Left, Right, and Stay

Formal definition

• A Turing machine (TM) is a 7-tuple: $M = (Q, \Sigma, \Gamma, \delta, q_0, \Box, F)$

 \clubsuit Q is a finite set of **internal states**

- * Σ is a finite set of **symbols**
 - $\Sigma \subseteq \Gamma \{\Box\}$
- Γ is a finite set of symbols called **tape alphabets**
- \clubsuit δ is a set of transition functions
 - $\delta: \mathbf{Q} \times \mathbf{\Gamma} \to \mathbf{Q} \times \mathbf{\Gamma} \times \{L, R, S\}$
- ✤ $q_0 \in Q$ is the initial state
- $\clubsuit \square \in \Gamma \text{ is a special symbol called the$ **blank** $}$
- $\clubsuit F \subseteq Q \text{ is a set of final states}$

• TMs with a Stay-option vs Standard TM

Is TM with a Stay-option more powerful?

• TMs with a Stay-option vs Standard TM

Is TM with a Stay-option more powerful?

* No!

• TMs with a Stay-option vs Standard TM

Is TM with a Stay-option more powerful?

* No!

• TMs with a Stay-option vs Standard TM

Is TM with a Stay-option more powerful?

* No!

• TMs with a Stay-option vs Standard TM

Is TM with a Stay-option more powerful?

* No!

• TMs with a Stay-option vs Standard TM

Is TM with a Stay-option more powerful?

* No!

• A Turing machine with several tapes

Each with its own independently controlled read-write head

Multitape Turing machine: Formal definition

• A Turing machine (TM) is a 7-tuple: $M = (Q, \Sigma, \Gamma, \delta, q_0, \Box, F)$

 $\clubsuit Q$ is a finite set of **internal states**

* Σ is a finite set of **symbols**

• $\Sigma \subseteq \Gamma - \{\Box\}$

- \clubsuit Γ is a finite set of symbols called **tape alphabets**
- \clubsuit δ is a set of transition functions
 - $\delta: \boldsymbol{Q} \times \boldsymbol{\Gamma}^n \to \boldsymbol{Q} \times \boldsymbol{\Gamma}^n \times \{\boldsymbol{L}, \boldsymbol{R}\}^n$
- ✤ $q_0 \in Q$ is the initial state

 $\clubsuit \square \in \Gamma \text{ is a special symbol called the$ **blank** $}$

 $\clubsuit F \subseteq Q \text{ is a set of final states}$

Multitape Turing machine: Example

•
$$\delta(q_0, a, e) = (q_1, x, y, L, R)$$

• Multitape Turing machine: Example

•
$$\delta(q_0, a, e) = (q_1, x, y, L, R)$$

- Multitape Turing machine: Example
 - $L = \{ w \mid w \text{ is a palindrome } (w = w^R) \text{ and } w \in \{0, 1\}^* \}$
 - In a single tape TM,

TAPE

- Multitape Turing machine: Example
 - $L = \{ w \mid w \text{ is a palindrome } (w = w^R) \text{ and } w \in \{0, 1\}^* \}$
 - In a multitape TM,

- Multitape Turing machine: Example
 - $L = \{ w \mid w \text{ is a palindrome } (w = w^R) \text{ and } w \in \{0, 1\}^* \}$
 - In a multitape TM,

- Multitape Turing machine: Example
 - $L = \{ w \mid w \text{ is a palindrome } (w = w^R) \text{ and } w \in \{0, 1\}^* \}$
 - In a multitape TM,

- Multitape Turing machine: Example
 - $L = \{ w \mid w \text{ is a palindrome } (w = w^R) \text{ and } w \in \{0, 1\}^* \}$
 - In a multitape TM,

- Multitape Turing machine: Example
 - $L = \{ w \mid w \text{ is a palindrome } (w = w^R) \text{ and } w \in \{0, 1\}^* \}$

• Multitape Turing machine: Example

•
$$L = \{ w \mid w \text{ is a palindrome } (w = w^R) \text{ and } w \in \{0, 1\}^* \}$$

Multitape TM vs Standard TM

Is multitape TM more powerful?

Multitape TM vs Standard TM

Is multitape TM more powerful?

* No!

• We can build an equivalent standard TM for the given multitape TM

Multitape TM vs Standard TM

One idea: using "#" and dotted symbols

• A Turing machine with multitrack tapes

Multitrack Turing machine: Formal definition

• A Turing machine (TM) is a 7-tuple: $M = (Q, \Sigma, \Gamma, \delta, q_0, \Box, F)$

 $\clubsuit Q$ is a finite set of **internal states**

* Σ is a finite set of **symbols**

• $\Sigma \subseteq \Gamma - \{\Box\}$

- \clubsuit Γ is a finite set of symbols called **tape alphabets**
- \clubsuit δ is a set of transition functions
 - $\delta: \mathbf{Q} \times \Gamma^n \to \mathbf{Q} \times \Gamma^n \times \{L, R\}$
- ✤ $q_0 \in Q$ is the initial state

↔ □ ∈ Γ is a special symbol called the **blank**

 $\clubsuit F \subseteq Q \text{ is a set of final states}$

- Multitrack Turing machine: Example
 - Multitrack TM for $L = \{a^n b^n c^n \mid n \ge 0\}$

Multitrack Turing machine: Example

• Multitrack TM for $L = \{a^n b^n c^n \mid n \ge 0\}$

Multitrack TM vs Standard TM

Is multitrack TM more powerful?

Multitrack TM vs Standard TM

Is multitrack TM more powerful?

* No!

• We can build an equivalent standard TM for the given multitrack TM

Multitrack TM vs Standard TM

- Nondeterministic Turing machine: Formal definition
 - A Turing machine (TM) is a 7-tuple: $M = (Q, \Sigma, \Gamma, \delta, q_0, \Box, F)$
 - $\clubsuit Q$ is a finite set of **internal states**
 - * Σ is a finite set of **symbols**
 - $\Sigma \subseteq \Gamma \{\Box\}$
 - \clubsuit Γ is a finite set of symbols called **tape alphabets**
 - \clubsuit δ is a set of transition functions
 - $\delta: Q \times \Gamma \to 2^{Q \times \Gamma \times \{L,R\}}$
 - ✤ $q_0 \in Q$ is the initial state
 - ↔ □ ∈ Γ is a special symbol called the **blank**
 - $\clubsuit F \subseteq Q \text{ is a set of final states}$

• Nondeterministic Turing machine

- It is not clear what role NTM plays in computing functions..
 - NTM are usually viewed as accepters
- We can build an equivalent standard TM for the given NTM

<https://www.andrew.cmu.edu/user/ko/pdfs/lecture-I3.pdf>

• Leverage three-tape Turing machine

• Leverage three-tape Turing machine

More extensions of TMs

There are more extensions

- TMs with k-head tape
- TMs with semi-infinite tape
- •

• But all of them are equivalent to standard TMs

• A standard TM is the most powerful model of computation!

Next Lecture

- Decidability
- Chomsky Hierarchy