
COSE215: Theory of Computation

Seunghoon Woo

Fall 2023

1Theory of Computation

Lecture 11

Limits of Algorithmic
Computation

Contents

• Decidability

• Chomsky Hierarchy

Theory of Computation 2

Limits of Algorithmic Computation

• Turing machines can do anything that computers can do

• Some problems cannot be solved by Turing machines

▪ A problem that cannot be done by a Turing machine

= A problem that is not in the power of even the most powerful computer

Theory of Computation 3

Decidability

• Let 𝑴 = (𝑸, 𝚺, 𝜞, 𝜹, 𝒒𝟎, □, 𝑭) be a Turing machine

▪ The language accepted by 𝑀 is the set

𝐿 𝑀 = {𝑤 ∈ Σ∗ ∶ 𝑞0𝑤 ⊢∗ 𝑥1𝑞𝑓𝑥2 ⊬, 𝑞𝑓∈ 𝐹, 𝑥1, 𝑥2 ∈ Γ∗}

Theory of Computation 4

Decidability

• A function 𝑓 (domain 𝐷) is said to be Turing-computable if there

exists some Turing machine 𝑀 = (𝑄, Σ, 𝛤, 𝛿, 𝑞0, □, 𝐹) such that

𝑞0𝑤 ⊢∗ 𝑞𝑓𝑓(𝑤) ⊬, where 𝑞𝑓 ∈ 𝐹 and all 𝑤 ∈ 𝐷

Theory of Computation 5

Decidability

• A language 𝑳 is decidable (recursive) if there is a TM 𝑴 such

that

1. 𝐿 𝑀 = 𝐿

2. 𝑀 halts on all inputs

Theory of Computation 6

Decidability

• Revisit: A language 𝑳 is recursively enumerable if there exists

a TM 𝑴 such that 𝑳 = 𝑳(𝑴)

▪ If 𝑤 ∈ 𝐿, then 𝑀 halts on 𝑤 and accepts 𝑤

▪ If 𝑤 ∉ 𝐿, then the following two cases are possible

❖ 𝑀 halts on 𝑤 and rejects 𝑤

❖ 𝑀 does not halt on 𝑤 (e.g., infinite loop)

Theory of Computation 7

Decidability

• A language 𝑳 is decidable (recursive) if there is a TM 𝑴 such

that 𝑳 = 𝑳(𝑴)

▪ If 𝑤 ∈ 𝐿, then 𝑀 halts on 𝑤 and accepts 𝑤

▪ If 𝑤 ∉ 𝐿, then 𝑀 halts on 𝑤 and rejects 𝑤

Theory of Computation 8

• Halting problem

▪ Given the description of a Turing machine 𝑀 and an input 𝑤, does 𝑀, when started

in the initial configuration 𝑞0𝑤, perform a computation that eventually halts?

❖ (𝑀,𝑤) halts or does not halt

❖ Domain of this problem is the set of all Turing machines and all 𝑤

Theory of Computation 9

Decidability

Decidability

• Halting problem

▪ Given the description of a Turing machine 𝑀 and an input 𝑤, does 𝑀, when started

in the initial configuration 𝑞0𝑤, perform a computation that eventually halts?

❖ (𝑀,𝑤) halts or does not halt

❖ Domain of this problem is the set of all Turing machines and all 𝑤

▪ We cannot find the answer by simply simulating 𝑀 with respect to 𝑤

❖Actually entering an infinite loop vs. very long calculation

Theory of Computation 10

Decidability

• Halting problem (undecidable)

▪ Given the description of a Turing machine 𝑀 and an input 𝑤, does 𝑀, when started

in the initial configuration 𝑞0𝑤, perform a computation that eventually halts?

❖ (𝑀,𝑤) halts or does not halt

❖ Domain of this problem is the set of all Turing machines and all 𝑤

▪ We cannot find the answer by simply simulating 𝑀 with respect to 𝑤

❖Actually entering an infinite loop vs. very long calculation

▪ Actually, this is a undecidable problem!

Theory of Computation 11

Decidability

• Proof by Contradiction

▪ Assume we can create a Turing machine 𝐻 𝑀,𝑤

❖After receiving 𝑀 and 𝑤, 𝐻 will output whether or not the Turing machine 𝑀 halts

Theory of Computation 12

𝑞0

𝑞𝑦𝑒𝑠

𝐻

𝑀,𝑤

𝑞𝑛𝑜

𝑀 halts

𝑀 does not

halts

Decidability

• Proof by Contradiction

▪ Consider an inverted Turing machine 𝐻′ 𝑀,𝑤

❖ If 𝐻 𝑀,𝑤 returns yes, then 𝐻′ falls into an infinite loop

❖ If 𝐻 𝑀,𝑤 returns no, then 𝐻′ halts

Theory of Computation 13

𝑀,𝑤

𝐻′

𝑞𝑎 𝑞𝑏

𝑀 halts =>

𝐻′ does not halt

𝑀 does not halt =>

𝐻′ halts

Decidability

• Proof by Contradiction

▪ Then, consider 𝐻′ 𝐻′, 𝑤

❖ If 𝐻′ finally halts, then 𝐻′ falls into an infinite loop

❖ If 𝐻′ does not halt, then 𝐻′ halts

Theory of Computation 14

𝐻′, 𝑤

𝐻′

𝑞𝑎 𝑞𝑏

Decidability

• Proof by Contradiction

▪ Then, consider 𝐻′ 𝐻′, 𝑤

❖ If 𝐻′ finally halts, then 𝐻′ falls into an infinite loop

❖ If 𝐻′ does not halt, then 𝐻′ halts

Theory of Computation 15

𝐻′, 𝑤

𝐻′

𝑞𝑎 𝑞𝑏

CONTRADICTION

Decidability

• Proof by Contradiction (using pseudocode)

▪ Assume that there is an algorithm that can decide the halting problem

▪ Consider the function exit(a, i)

❖ a: an arbitrary program to be used

❖ i: an arbitrary input to be used

Theory of Computation 16

Decidability

• Proof by Contradiction (using pseudocode)

▪ Assume that there is an algorithm that can decide the halting problem

▪ Consider the function exit(a, i)

❖ a: an arbitrary program to be used

❖ i: an arbitrary input to be used

▪ exit returns True if a stops after finite steps for input i and returns a result

▪ exit returns False if a does not stop with an input i (e.g., infinite loop)

Theory of Computation 17

Decidability

• Proof by Contradiction (using pseudocode)

▪ Let consider another function test(s)

Theory of Computation 18

function test(s) {
if exit(s,s) == false
return True

else
loop forever

}

Decidability

• Proof by Contradiction (using pseudocode)

▪ Let consider another function test(s)

Theory of Computation 19

function test(s) {
if exit(s,s) == false
return True

else
loop forever

}

Is exit(test, test) True?

Decidability

• Proof by Contradiction (using pseudocode)

▪ Let consider another function test(s)

Theory of Computation 20

function test(s) {
if exit(s,s) == false
return True

else
loop forever

}

exit(test, test) == True

 test(test) should be halted

 But because exist(test,

test) is True, thus test(test)

does not be halted

CONTRADICTION

Decidability

• Proof by Contradiction (using pseudocode)

▪ Let consider another function test(s)

Theory of Computation 21

function test(s) {
if exit(s,s) == false
return True

else
loop forever

}

exit(test, test) == False

 test(test) should not be

halted

 But because exist(test,

test) is False, thus

test(test) halts

CONTRADICTION

Efficiency

• Certain problems can be solved by different automata

▪ There may be a difference in terms of efficiency

▪ E.g., Standard Turing machine vs. Multitape Turing machine

Theory of Computation 22

Efficiency

• Example

▪ Standard Turing machine for 𝐿 = 𝑎𝑛𝑏𝑛 𝑛 ≥ 0}

Theory of Computation 23

Efficiency

• Example

▪ Standard Turing machine for 𝐿 = 𝑎𝑛𝑏𝑛 𝑛 ≥ 0}

❖ Roughly 2𝑛 steps are required to match each 𝑎 with the corresponding 𝑏

❖ Complexity: 𝑂(𝑛2)

Theory of Computation 24

Efficiency

• Example

▪ Multitape Turing machine for 𝐿 = 𝑎𝑛𝑏𝑛 𝑛 ≥ 0}

Theory of Computation 25

□ a a a b b b □

TAPES

□□□□□□□□
Copy a’s

Efficiency

• Example

▪ Multitape Turing machine for 𝐿 = 𝑎𝑛𝑏𝑛 𝑛 ≥ 0}

Theory of Computation 26

□ a a a b b b □

□ a a a □□□□

Compare

Tape1 and Tape2

Efficiency

• Example

▪ Multitape Turing machine for 𝐿 = 𝑎𝑛𝑏𝑛 𝑛 ≥ 0}

Theory of Computation 27

□ a a a b b b □

□ a a a □□□□

Complexity

= 𝑂(𝑛)

Unrestricted grammar

• Definition

▪ 𝐺 = 𝑉, 𝑇, 𝑆, 𝑃 is said to be unrestricted if all productions are of the form

❖ 𝑥 → 𝑦

where 𝑥 ∈ 𝑉 ∪ 𝑇 + and 𝑦 ∈ 𝑉 ∪ 𝑇 ∗

Theory of Computation 28

Unrestricted grammar

• Definition

▪ 𝐺 = 𝑉, 𝑇, 𝑆, 𝑃 is said to be unrestricted if all productions are of the form

❖ 𝑥 → 𝑦

where 𝑥 ∈ 𝑉 ∪ 𝑇 + and 𝑦 ∈ 𝑉 ∪ 𝑇 ∗

• Unrestricted grammar generates exactly the family of recursively

enumerable languages!

▪ For every recursively enumerable language 𝐿, there exists an unrestricted

grammar 𝐺, such that 𝐿 = 𝐿(𝐺)

Theory of Computation 29

Context-sensitive grammar

• Definition

▪ 𝐺 = 𝑉, 𝑇, 𝑆, 𝑃 is said to be context-sensitive if all productions are of the form

❖ 𝑥 → 𝑦

where 𝑥, 𝑦 ∈ 𝑉 ∪ 𝑇 + and 𝑥 ≤ |𝑦|

Theory of Computation 30

Context-sensitive grammar

• Definition

▪ 𝐺 = 𝑉, 𝑇, 𝑆, 𝑃 is said to be context-sensitive if all productions are of the form

❖ 𝑥 → 𝑦

where 𝑥, 𝑦 ∈ 𝑉 ∪ 𝑇 + and 𝑥 ≤ |𝑦|

• Context-sensitive grammar generates the family of context-sensitive

languages!

▪ For every context-sensitive language 𝐿, there exists a context-sensitive grammar 𝐺,

such that 𝐿 = 𝐿(𝐺) or 𝐿 = 𝐿 𝐺 ∪ {𝜆}

Theory of Computation 31

Context-sensitive grammar

• CSL can be recognized by linear bounded automata

▪ A nondeterministic Turing machine that limits the size of tape that can be used

❖ Size limits vary depending on input

❖ e.g., exactly equal to the length of the input, or we can use as multiples of input

▪ Use ‘[’ and ‘]’ to restrict tape cells

❖ Immutable tape alphabets (we cannot convert them to other alphabets)

Theory of Computation 32

… [𝑎 𝑎 𝑏 𝑏] …

Context-sensitive grammar

• CSL can be recognized by linear bounded automata

▪ A nondeterministic Turing machine that limits the size of tape that can be used

❖ Size limits vary depending on input

❖ e.g., exactly equal to the length of the input, or we can use as multiples of input

▪ Use ‘[’ and ‘]’ to restrict tape cells

❖ Immutable tape alphabets (we cannot convert them to other alphabets)

Theory of Computation 33

… [𝑎 𝑎 𝑏 𝑏] …

Since CSL and LBA are not covered in detail in the
ToC textbooks, these will be mentioned briefly

Chomsky Hierarchy

Theory of Computation 34

Regular

Context-Free

Context-Sensitive

Recursively Enumerable

Language Relationships

Theory of Computation 35

RL

CFL

CSL

REL

DL

DCFL

Next Lecture

∅

Small seminar..!

Theory of Computation 36

