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Limits of Algorithmic Computation

• Turing machines can do anything that computers can do

• Some problems cannot be solved by Turing machines

▪ A problem that cannot be done by a Turing machine

= A problem that is not in the power of even the most powerful computer
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Decidability

• Let 𝑴 = (𝑸, 𝚺, 𝜞, 𝜹, 𝒒𝟎, □, 𝑭) be a Turing machine

▪ The language accepted by 𝑀 is the set

𝐿 𝑀 = {𝑤 ∈ Σ∗ ∶ 𝑞0𝑤 ⊢∗ 𝑥1𝑞𝑓𝑥2 ⊬, 𝑞𝑓∈ 𝐹, 𝑥1, 𝑥2 ∈ Γ∗}
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Decidability

• A function 𝑓 (domain 𝐷) is said to be Turing-computable if there 

exists some Turing machine 𝑀 = (𝑄, Σ, 𝛤, 𝛿, 𝑞0, □, 𝐹) such that

𝑞0𝑤 ⊢∗ 𝑞𝑓𝑓(𝑤) ⊬, where 𝑞𝑓 ∈ 𝐹 and all 𝑤 ∈ 𝐷
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Decidability

• A language 𝑳 is decidable (recursive) if there is a TM 𝑴 such 

that

1. 𝐿 𝑀 = 𝐿

2. 𝑀 halts on all inputs
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Decidability

• Revisit: A language 𝑳 is recursively enumerable if there exists 

a TM 𝑴 such that 𝑳 = 𝑳(𝑴)

▪ If 𝑤 ∈ 𝐿, then 𝑀 halts on 𝑤 and accepts 𝑤

▪ If 𝑤 ∉ 𝐿, then the following two cases are possible

❖ 𝑀 halts on 𝑤 and rejects 𝑤

❖ 𝑀 does not halt on 𝑤 (e.g., infinite loop)
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Decidability

• A language 𝑳 is decidable (recursive) if there is a TM 𝑴 such 

that 𝑳 = 𝑳(𝑴)

▪ If 𝑤 ∈ 𝐿, then 𝑀 halts on 𝑤 and accepts 𝑤

▪ If 𝑤 ∉ 𝐿, then 𝑀 halts on 𝑤 and rejects 𝑤
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• Halting problem 

▪ Given the description of a Turing machine 𝑀 and an input 𝑤, does 𝑀, when started 

in the initial configuration 𝑞0𝑤, perform a computation that eventually halts?

❖ (𝑀,𝑤) halts or does not halt

❖ Domain of this problem is the set of all Turing machines and all 𝑤
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Decidability

• Halting problem

▪ Given the description of a Turing machine 𝑀 and an input 𝑤, does 𝑀, when started 

in the initial configuration 𝑞0𝑤, perform a computation that eventually halts?

❖ (𝑀,𝑤) halts or does not halt

❖ Domain of this problem is the set of all Turing machines and all 𝑤

▪ We cannot find the answer by simply simulating 𝑀 with respect to 𝑤

❖Actually entering an infinite loop vs. very long calculation
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Decidability

• Halting problem (undecidable)

▪ Given the description of a Turing machine 𝑀 and an input 𝑤, does 𝑀, when started 

in the initial configuration 𝑞0𝑤, perform a computation that eventually halts?

❖ (𝑀,𝑤) halts or does not halt

❖ Domain of this problem is the set of all Turing machines and all 𝑤

▪ We cannot find the answer by simply simulating 𝑀 with respect to 𝑤

❖Actually entering an infinite loop vs. very long calculation

▪ Actually, this is a undecidable problem!

Theory of Computation 11



Decidability

• Proof by Contradiction

▪ Assume we can create a Turing machine 𝐻 𝑀,𝑤

❖After receiving 𝑀 and 𝑤, 𝐻 will output whether or not the Turing machine 𝑀 halts
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Decidability

• Proof by Contradiction

▪ Consider an inverted Turing machine 𝐻′ 𝑀,𝑤

❖ If 𝐻 𝑀,𝑤 returns yes, then 𝐻′ falls into an infinite loop

❖ If 𝐻 𝑀,𝑤 returns no, then 𝐻′ halts
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Decidability

• Proof by Contradiction

▪ Then, consider 𝐻′ 𝐻′, 𝑤

❖ If 𝐻′ finally halts, then 𝐻′ falls into an infinite loop

❖ If 𝐻′ does not halt, then 𝐻′ halts
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Decidability

• Proof by Contradiction

▪ Then, consider 𝐻′ 𝐻′, 𝑤

❖ If 𝐻′ finally halts, then 𝐻′ falls into an infinite loop

❖ If 𝐻′ does not halt, then 𝐻′ halts
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Decidability

• Proof by Contradiction (using pseudocode)

▪ Assume that there is an algorithm that can decide the halting problem

▪ Consider the function exit(a, i)

❖ a: an arbitrary program to be used

❖ i: an arbitrary input to be used
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Decidability

• Proof by Contradiction (using pseudocode)

▪ Assume that there is an algorithm that can decide the halting problem

▪ Consider the function exit(a, i)

❖ a: an arbitrary program to be used

❖ i: an arbitrary input to be used

▪ exit returns True if a stops after finite steps for input i and returns a result

▪ exit returns False if a does not stop with an input i (e.g., infinite loop)
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Decidability

• Proof by Contradiction (using pseudocode)

▪ Let consider another function test(s)
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function test(s) {
if exit(s,s) == false
return True

else
loop forever

}



Decidability

• Proof by Contradiction (using pseudocode)

▪ Let consider another function test(s)
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function test(s) {
if exit(s,s) == false
return True

else
loop forever

}

Is exit(test, test) True?



Decidability

• Proof by Contradiction (using pseudocode)

▪ Let consider another function test(s)
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function test(s) {
if exit(s,s) == false
return True

else
loop forever

}

exit(test, test) == True

 test(test) should be halted

 But because exist(test, 

test) is True, thus test(test) 

does not be halted
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Decidability

• Proof by Contradiction (using pseudocode)

▪ Let consider another function test(s)

Theory of Computation 21

function test(s) {
if exit(s,s) == false
return True

else
loop forever

}

exit(test, test) == False

 test(test) should not be 

halted

 But because exist(test, 

test) is False, thus 

test(test) halts
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Efficiency

• Certain problems can be solved by different automata

▪ There may be a difference in terms of efficiency

▪ E.g., Standard Turing machine vs. Multitape Turing machine
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Efficiency

• Example

▪ Standard Turing machine for 𝐿 = 𝑎𝑛𝑏𝑛 𝑛 ≥ 0}
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Efficiency

• Example

▪ Standard Turing machine for 𝐿 = 𝑎𝑛𝑏𝑛 𝑛 ≥ 0}

❖ Roughly 2𝑛 steps are required to match each 𝑎 with the corresponding 𝑏

❖ Complexity: 𝑂(𝑛2)
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Efficiency

• Example

▪ Multitape Turing machine for 𝐿 = 𝑎𝑛𝑏𝑛 𝑛 ≥ 0}
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Efficiency

• Example

▪ Multitape Turing machine for 𝐿 = 𝑎𝑛𝑏𝑛 𝑛 ≥ 0}
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Efficiency

• Example

▪ Multitape Turing machine for 𝐿 = 𝑎𝑛𝑏𝑛 𝑛 ≥ 0}
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□ a a a b b b □
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= 𝑂(𝑛)



Unrestricted grammar

• Definition

▪ 𝐺 = 𝑉, 𝑇, 𝑆, 𝑃 is said to be unrestricted if all productions are of the form

❖ 𝑥 → 𝑦

where 𝑥 ∈ 𝑉 ∪ 𝑇 + and 𝑦 ∈ 𝑉 ∪ 𝑇 ∗
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Unrestricted grammar

• Definition

▪ 𝐺 = 𝑉, 𝑇, 𝑆, 𝑃 is said to be unrestricted if all productions are of the form

❖ 𝑥 → 𝑦

where 𝑥 ∈ 𝑉 ∪ 𝑇 + and 𝑦 ∈ 𝑉 ∪ 𝑇 ∗

• Unrestricted grammar generates exactly the family of recursively 

enumerable languages!

▪ For every recursively enumerable language 𝐿, there exists an unrestricted 

grammar 𝐺, such that 𝐿 = 𝐿(𝐺)
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Context-sensitive grammar

• Definition

▪ 𝐺 = 𝑉, 𝑇, 𝑆, 𝑃 is said to be context-sensitive if all productions are of the form

❖ 𝑥 → 𝑦

where 𝑥, 𝑦 ∈ 𝑉 ∪ 𝑇 + and 𝑥 ≤ |𝑦|
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Context-sensitive grammar

• Definition

▪ 𝐺 = 𝑉, 𝑇, 𝑆, 𝑃 is said to be context-sensitive if all productions are of the form

❖ 𝑥 → 𝑦

where 𝑥, 𝑦 ∈ 𝑉 ∪ 𝑇 + and 𝑥 ≤ |𝑦|

• Context-sensitive grammar generates the family of context-sensitive 

languages!

▪ For every context-sensitive language 𝐿, there exists a context-sensitive grammar 𝐺,

such that 𝐿 = 𝐿(𝐺) or 𝐿 = 𝐿 𝐺 ∪ {𝜆}
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Context-sensitive grammar

• CSL can be recognized by linear bounded automata

▪ A nondeterministic Turing machine that limits the size of tape that can be used

❖ Size limits vary depending on input

❖ e.g., exactly equal to the length of the input, or we can use as multiples of input

▪ Use ‘[’ and ‘]’ to restrict tape cells

❖ Immutable tape alphabets (we cannot convert them to other alphabets)

Theory of Computation 32

… [ 𝑎 𝑎 𝑏 𝑏 ] …



Context-sensitive grammar

• CSL can be recognized by linear bounded automata

▪ A nondeterministic Turing machine that limits the size of tape that can be used

❖ Size limits vary depending on input

❖ e.g., exactly equal to the length of the input, or we can use as multiples of input

▪ Use ‘[’ and ‘]’ to restrict tape cells

❖ Immutable tape alphabets (we cannot convert them to other alphabets)
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… [ 𝑎 𝑎 𝑏 𝑏 ] …

Since CSL and LBA are not covered in detail in the 
ToC textbooks, these will be mentioned briefly



Chomsky Hierarchy
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Language Relationships

Theory of Computation 35

RL

CFL

CSL

REL

DL

DCFL



Next Lecture

∅

Small seminar..!
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