Lecture II Limits of Algorithmic Computation

COSE215: Theory of Computation

Seunghoon Woo

Fall 2023

Contents

- Decidability
- Chomsky Hierarchy

Limits of Algorithmic Computation

- Turing machines can do anything that computers can do
- Some problems cannot be solved by Turing machines
 - A problem that cannot be done by a Turing machine
 - = A problem that is not in the power of even the most powerful computer

- Let $M = (Q, \Sigma, \Gamma, \delta, q_0, \Box, F)$ be a Turing machine
 - The language accepted by *M* is the set

 $L(M) = \{ w \in \Sigma^* : q_0 w \vdash^* x_1 q_f x_2 \not\vdash, q_f \in F, x_1, x_2 \in \Gamma^* \}$

• A function f (domain D) is said to be **Turing-computable** if there exists some Turing machine $M = (Q, \Sigma, \Gamma, \delta, q_0, \Box, F)$ such that

 $q_0 w \vdash^* q_f f(w) \not\vdash$, where $q_f \in F$ and all $w \in D$

- A language *L* is decidable (recursive) if there is a TM *M* such that
 - $I. \quad L(M) = L$
 - 2. *M* halts on all inputs

- Revisit: A language L is recursively enumerable if there exists a TM M such that L = L(M)
 - If $w \in L$, then M halts on w and accepts w
 - If $w \notin L$, then the following two cases are possible
 - \bigstar *M* halts on *w* and rejects *w*
 - A does not halt on w (e.g., infinite loop)

- A language L is decidable (recursive) if there is a TM M such that L = L(M)
 - If $w \in L$, then M halts on w and accepts w
 - If $w \notin L$, then *M* halts on *w* and rejects *w*

Halting problem

- Given the description of a Turing machine M and an input w, does M, when started in the initial configuration q_0w , perform a computation that eventually halts?
 - (M, w) halts or does not halt
 - \clubsuit Domain of this problem is the set of all Turing machines and all w

Halting problem

- Given the description of a Turing machine M and an input w, does M, when started in the initial configuration q_0w , perform a computation that eventually halts?
 - (M, w) halts or does not halt
 - \clubsuit Domain of this problem is the set of all Turing machines and all w
- We cannot find the answer by simply simulating M with respect to w
 - Actually entering an infinite loop vs. very long calculation

• Halting problem (undecidable)

• Given the description of a Turing machine M and an input w, does M, when started in the initial configuration q_0w , perform a computation that eventually halts?

(M, w) halts or does not halt

- \clubsuit Domain of this problem is the set of all Turing machines and all w
- We cannot find the answer by simply simulating M with respect to w

Actually entering an infinite loop vs. very long calculation

Actually, this is a undecidable problem!

Proof by Contradiction

• Assume we can create a Turing machine H(M, w)

 \clubsuit After receiving M and w, H will output whether or not the Turing machine M halts

Proof by Contradiction

• Consider an inverted Turing machine H'(M, w)

♦ If H(M, w) returns yes, then H' falls into an infinite loop

• If H(M, w) returns no, then H' halts

Proof by Contradiction

• Then, consider H'(H', w)

 \clubsuit If H' finally halts, then H' falls into an infinite loop

 \clubsuit If H' does not halt, then H' halts

Proof by Contradiction

• Then, consider H'(H', w)

 \clubsuit If H' finally halts, then H' falls into an infinite loop

 \clubsuit If H' does not halt, then H' halts

• Proof by Contradiction (using pseudocode)

- Assume that there is an algorithm that can decide the halting problem
- Consider the function exit(a, i)
 - ✤ a: an arbitrary program to be used
 - ✤ i: an arbitrary input to be used

• Proof by Contradiction (using pseudocode)

- Assume that there is an algorithm that can decide the halting problem
- Consider the function exit(a, i)
 - ✤ a: an arbitrary program to be used
 - ✤ i: an arbitrary input to be used
- exit returns True if a stops after finite steps for input i and returns a result
- exit returns False if a does not stop with an input i (e.g., infinite loop)

- Proof by Contradiction (using pseudocode)
 - Let consider another function test(s)

```
function test(s) {
    if exit(s,s) == false
        return True
    else
        loop forever
}
```

- Proof by Contradiction (using pseudocode)
 - Let consider another function test(s)

```
function test(s) {
    if exit(s,s) == false
        return True
    else
        loop forever
     }
```

Is exit(test, test) True?

- Proof by Contradiction (using pseudocode)
 - Let consider another function test(s)

```
function test(s) {
    if exit(s,s) == false
        return True
    else
        loop forever
}
```

exit(test,test) == True

 \Rightarrow test(test) should be halted

⇒ But because exist(test, test) is True, thus test(test) does not be halted

CONTRADICTION

- Proof by Contradiction (using pseudocode)
 - Let consider another function test(s)

```
function test(s) {
   if exit(s,s) == false
      return True
   else
      loop forever
```

exit(test, test) == False

- \Rightarrow test(test) should not be halted
- ⇒ But because exist(test, test) is False, thus test(test) halts

• Certain problems can be solved by different automata

- There may be a difference in terms of efficiency
- E.g., Standard Turing machine vs. Multitape Turing machine

• Example

• Standard Turing machine for $L = \{a^n b^n \mid n \ge 0\}$

• $M = (\{q_0, q_1, q_2, q_3, q_4\}, \{a, b\}, \{a, b, A, B, \Box\}, \delta, q_0, \Box, \{q_4\})$

• Example

• Standard Turing machine for $L = \{a^n b^n \mid n \ge 0\}$

* Roughly 2n steps are required to match each a with the corresponding b

***** Complexity: $O(n^2)$

• Example

• Multitape Turing machine for $L = \{a^n b^n \mid n \ge 0\}$

• Example

• Multitape Turing machine for $L = \{a^n b^n \mid n \ge 0\}$

a

a

a

• Example

• Multitape Turing machine for $L = \{a^n b^n \mid n \ge 0\}$

Complexity = O(n)

Unrestricted grammar

Definition

• G = (V, T, S, P) is said to be unrestricted if all productions are of the form $\therefore x \rightarrow y$ where $x \in (V \cup T)^+$ and $y \in (V \cup T)^*$

Unrestricted grammar

Definition

• G = (V, T, S, P) is said to be unrestricted if all productions are of the form $\therefore x \rightarrow y$ where $x \in (V \cup T)^+$ and $y \in (V \cup T)^*$

- Unrestricted grammar generates exactly the family of recursively enumerable languages!
 - For every recursively enumerable language L, there exists an unrestricted grammar G, such that L = L(G)

Definition

• G = (V, T, S, P) is said to be context-sensitive if all productions are of the form $\Rightarrow x \rightarrow y$ where $x, y \in (V \cup T)^+$ and $|x| \leq |y|$

Definition

• G = (V, T, S, P) is said to be context-sensitive if all productions are of the form $\Rightarrow x \rightarrow y$ where $x, y \in (V \cup T)^+$ and $|x| \leq |y|$

- Context-sensitive grammar generates the family of context-sensitive languages!
 - For every context-sensitive language L, there exists a context-sensitive grammar G, such that L = L(G) or $L = L(G) \cup \{\lambda\}$

• CSL can be recognized by linear bounded automata

- A nondeterministic Turing machine that limits the size of tape that can be used
 - Size limits vary depending on input
 - ✤ e.g., exactly equal to the length of the input, or we can use as multiples of input
- Use '[' and ']' to restrict tape cells
 - Immutable tape alphabets (we cannot convert them to other alphabets)

$$\dots \begin{bmatrix} a & a & b & b \end{bmatrix} \dots$$

• CSL can be recognized by linear bounded automata

- A nondeterministic Turing machine that limits the size of tape that can be used
 - Size limits vary depending on input
 - ✤ e.g., exactly equal to the length of the input, or we can use as multiples of input
- Use '[' and ']' to restrict tape cells
 - Immutable tape alphabets (we cannot convert them to other alphabets)

Since CSL and LBA are not covered in detail in the ToC textbooks, these will be mentioned briefly

Chomsky Hierarchy

Language Relationships

Next Lecture

Small seminar..!