Lecture | |

Limits of Algorithmic

Computation
COSE215: Theory of Computation

Seunghoon Woo

Fall 2023

Theory of Computation

Contents

* Decidability
* Chomsky Hierarchy

Theory of Computation 2

Limits of Algorithmic Computation

* Turing machines can do anything that computers can do

* Some problems cannot be solved by Turing machines

" A problem that cannot be done by a Turing machine

= A problem that is not in the power of even the most powerful computer

Theory of Computation 3

Decidability

cLet M =(Q,X,T,6,q¢9, 0 F) be aTuring machine

" The language accepted by M is the set

LIM) ={w€ZX":quwtr"x1qrx, ¥, qs€ F,xq,x, €'}

Theory of Computation 4

Decidability

* A function f (domain D) is said to be Turing-computable if there
exists some Turing machine M = (Q, 2, I, 0, gy, 0, F) such that

qow H* qff(W) 7, where qr € F andallw € D

Theory of Computation 5

Decidability

* A language L is decidable (recursive) if there is aTM M such
that
. L(M) =1L
2. M halts on all inputs

Theory of Computation 6

Decidability

* Revisit: A language L is recursively enumerable if there exists
aTM M such that L = L(M)
" [f w € L, then M halts on w and accepts w

" [f w € L, then the following two cases are possible

% M halts on w and rejects w

“* M does not halt on w (e.g., infinite loop)

Theory of Computation 4

Decidability

* A language L is decidable (recursive) if there is aTM M such
that L = L(M)
" [f w € L, then M halts on w and accepts w

" [f w € L,then M halts on w and rejects w

Theory of Computation 8

Decidability

* Halting problem

= Given the description of a Turing machine M and an input w, does M, when started
in the initial configuration gyw, perform a computation that eventually halts?
¢ (M, w) halts or does not halt

¢ Domain of this problem is the set of all Turing machines and all w

Theory of Computation 9

Decidability

* Halting problem

= Given the description of a Turing machine M and an input w, does M, when started
in the initial configuration gyw, perform a computation that eventually halts?
¢ (M, w) halts or does not halt
¢ Domain of this problem is the set of all Turing machines and all w
" We cannot find the answer by simply simulating M with respect to w

¢ Actually entering an infinite loop vs. very long calculation

Theory of Computation 10

Decidability

* Halting problem (undecidable)

= Given the description of a Turing machine M and an input w, does M, when started
in the initial configuration gyw, perform a computation that eventually halts?
¢ (M, w) halts or does not halt
¢ Domain of this problem is the set of all Turing machines and all w
" We cannot find the answer by simply simulating M with respect to w

¢ Actually entering an infinite loop vs. very long calculation

= Actually, this is a undecidable problem!

Theory of Computation 11

Decidability

* Proof by Contradiction

» Assume we can create a Turing machine H(M, w)

* After receiving M and w, H will output whether or not the Turing machine M halts

>
> M halts
N M does not
>
halts

Theory of Computation 12

-
-
-
-
-
-
-
-
-
I
-
-
-
-
-
-
-
-
-=o
-
-
-
-
-~

Decidability

* Proof by Contradiction

» Consider an inverted Turing machine H'(M, w)
“ If H(M, w) returns yes, then H' falls into an infinite loop

¢ If H(M,w) returns no, then H' halts

H M halts =>

!/
> _*“b _> —> H does not halt
------------------- <4—
M,w ’

____________________ _ M does not halt =>

H' halts

Theory of Computation 13

Decidability

* Proof by Contradiction
* Then, consider H'(H', w)

“* If H' finally halts, then H' falls into an infinite loop

» If H does not halt, then H' halts

—>
L @ () (»)
H',w @

Theory of Computation 14

Decidability

* Proof by Contradiction
* Then, consider H'(H', w)

“* If H' finally halts, then H' falls into an infinite loop

» If H does not halt, then H' halts

H CONTRADICTION

—>
L @ () (»)
H',w @

Theory of Computation 15

Decidability

* Proof by Contradiction (using pseudocode)

= Assume that there is an algorithm that can decide the halting problem

» Consider the function exit(a, 1)

R/

** a: anarbitrary program to be used

/

¢ 1i: anarbitrary input to be used

Theory of Computation 16

Decidability

* Proof by Contradiction (using pseudocode)

= Assume that there is an algorithm that can decide the halting problem

» Consider the function exit(a, 1)

R/

** a: anarbitrary program to be used

/

¢ 1i: anarbitrary input to be used

= exit returns True if a stops after finite steps for input i and returns a result

= exit returns False if 2 does not stop with an input 1 (e.g., infinite loop)

Theory of Computation 17

Decidability

* Proof by Contradiction (using pseudocode)

» | et consider another function test(s)

function test(s) {
if exit(s,s) == false
return True
else
loop forever

Theory of Computation 18

Decidability

* Proof by Contradiction (using pseudocode)

» | et consider another function test(s)

function test(s) {
if exit(s,s) == false
return True Is exit(test, test) True!?
else
loop forever

Theory of Computation 19

Decidability

* Proof by Contradiction (using pseudocode)

» | et consider another function test(s)

function test(s) {
if exit(s,s) == false
return True
else
loop forever

Theory of Computation

exit(test, test) ==True
— test(test) should be halted

—> But because exist(test,
test) is True, thus test(test)
does not be halted

CONTRADICTION

20

Decidability

* Proof by Contradiction (using pseudocode)

» | et consider another function test(s)

function test(s) {
if exit(s,s) == false
return True
else
loop forever

Theory of Computation

exit(test, test) == False

— test(test) should not be
halted

— But because exist(test,
test) is False, thus
test(test) halts

CONTRADICTION

21

Efficiency

* Certain problems can be solved by different automata

* There may be a difference in terms of efficiency

" E.g., Standard Turing machine vs. Multitape Turing machine

Theory of Computation 22

Efficiency

* Example

= Standard Turing machine for L = {a"b" | n = 0}

"M = ({QO; Ch. QZl QBJ q4}: {a,b}, {a, b! A,B,D}, 5' qo’ 0, {q4})

B - B,R
a—>aR

B—-B,L

aeAR beBL a—-al
— —
Q.
AﬁAR
—>|:|L

Theory of Computation 23

Efficiency

* Example

= Standard Turing machine for L = {a"b" | n = 0}

¢ Roughly 2n steps are required to match each a with the corresponding b

< Complexity: 0(n?)

Theory of Computation 24

Efficiency

* Example

= Multitape Turing machine for L = {a"b™ | n = 0}

J TAPES
alala|/b/b|b

Copy a’s

Theory of Computation 25

Efficiency

* Example

= Multitape Turing machine for L = {a"b™ | n = 0}

|
alala|/b/b|b

Compare
Tapel and Tape2

Theory of Computation 26

Efficiency

* Example

= Multitape Turing machine for L = {a"b™ | n = 0}

|
alala|/b/b|b

Complexity
=0(n)

Theory of Computation 27

Unrestricted grammar

 Definition

» ¢ = (V,T,S,P) is said to be unrestricted if all productions are of the form
x> y

wherex € (WUT)Yandy € (WUT)*

Theory of Computation 28

Unrestricted grammar

 Definition

» ¢ = (V,T,S,P) is said to be unrestricted if all productions are of the form
I N y

wherex € (WUT)Yandy € (WUT)*

* Unrestricted grammar generates exactly the family of recursively
enumerable languages!

" For every recursively enumerable language L, there exists an unrestricted
grammar G, such that L = L(G)

Theory of Computation 29

Context-sensitive grammar

 Definition

» ¢ = (V,T,S,P) is said to be context-sensitive if all productions are of the form
x> y

where x,y € (W UT)" and |x| < |y|

Theory of Computation 30

Context-sensitive grammar

 Definition

» ¢ = (V,T,S,P) is said to be context-sensitive if all productions are of the form
I N y

where x,y € (W UT)" and |x| < |y|

* Context-sensitive grammar generates the family of context-sensitive
languages!

" For every context-sensitive language L, there exists a context-sensitive grammar G,
such that L = L(G) or L = L(G) U {1}

Theory of Computation 31

Context-sensitive grammar

* CSL can be recognized by linear bounded automata

* A nondeterministic Turing machine that limits the size of tape that can be used
** Size limits vary depending on input
** e.g., exactly equal to the length of the input, or we can use as multiples of input

" Use T’ and T’ to restrict tape cells

¢ Immutable tape alphabets (we cannot convert them to other alphabets)

Theory of Computation 32

Context-sensitive grammar

* CSL can be recognized by linear bounded automata

* A nondeterministic Turing machine that limits the size of tape that can be used
** Size limits vary depending on input
** e.g., exactly equal to the length of the input, or we can use as multiples of input

" Use T’ and T’ to restrict tape cells

¢ Immutable tape alphabets (we cannot convert them to other alphabets)

| lala|b|b|]

Since CSL and LBA are not covered in detail in the
ToC textbooks, these will be mentioned briefly

Theory of Computation 33

Theory of Computation

Chomsky Hierarchy

Recursively Enumerable

Context-Sensitive

Context-Free

Regular

34

Language Relationships

Theory of Computation 35

Next Lecture

0

Small seminar..!

Theory of Computation

