Please check your attendance
using Blackboard!

Theory of Computation 1

Lecture 2

Finite Automata
COSE215: Theory of Computation

Seunghoon Woo

Fall 2023

Theory of Computation 2

Contents

 Finite Automata

* Deterministic Finite Automata (DFA)

* Nondeterministic Finite Automata (NFA)

Theory of Computation 3

Automata

Learning Objectives

* Why do we study the Theory of Computation?

I. Theory of Computation is a field that deals with theoretical considerations
on the principles of operation and computational possibilities of computers

+* What can computers do?

This helps to develop the ability to model a given problem and the core of

all computers and their applications

¢ Model math problems into a form that computers can understand

3. The ideas we will discuss have some immediate and important applications

(e.g., programming languages, compilers, operating systems, security, and Al)

Theory of Computation 4

Automata

e An automaton

" An abstract model of a digital computer

* Every automaton includes some essential features

= Reading input (a string over an alphabet)

¢ Automaton can read it but not change
* Producing output
= Containing a temporal storage

= Containing a control unit (with a finite number of internal states)

Theory of Computation 5

Automata

e An automaton

Input File
&
K— 1 3
Control Unit 03
Output

Theory of Computation 6

Finite Automata

* The simplest model: finite automata (finite state machines)

= A finite set of internal states (with no other memory)

" Finite automata can be used in many fields

¢ Security, compiler, network protocol, etc.

Theory of Computation 4

Finite Automata

* The simplest model: finite state machines (finite automata)

= Example: a controller for automatic door

Front

Rear

CLOSED

Front

OPEN

Rear

Theory of Computation 8

Finite Automata

* The simplest model: finite state machines (finite automata)

= Example: a controller for automatic door
¢ If a person is on the Front, the door should open
¢ It should remain open long enough to pass all the way through

“* The door should not strike some standing behind it! (Rear)

—

Front

Rear

CLOSED

Front

OPEN

Rear

Theory of Computation 9

Finite Automata

* The simplest model: finite state machines (finite automata)

* Example: a controller for automatic door

+ State transition table

Theory of Computation

NEITHER FRONT REAR BOTH
CLOSED CLOSED OPEN CLOSED CLOSED
OPEN CLOSED OPEN OPEN OPEN
—
Front Rear Front Rear
CLOSED OPEN

10

Finite Automata

* The simplest model: finite state machines (finite automata)

* Example: a controller for automatic door

+ State transition table

Theory of Computation

NEITHER FRONT REAR BOTH

CLOSED CLOSED OPEN CLOSED CLOSED

OPEN CLOSED OPEN OPEN OPEN

% State transition graph
BOTH m BOTH

NEITHER

FRONT ‘ ‘ ‘ ’ NEITHER
FRONT

REAR

11

Deterministic Finite Automata (DFA)

* DFA

» Containing a finite number of internal states

“* Including a starting (initial) state and final (accepting) states
" Processing an input string, consisting of a sequence of symbols

* Making transitions for one state to another

¢ Depending on the current state and input symbol

" Producing output

¢ Accept or Reject

Theory of Computation 12

Deterministic Finite Automata (DFA)

* Example

Starting Accepting

state state
‘ I I
@ > ‘ : @
<< .@ <
O | O
0

Theory of Computation 13

Deterministic Finite Automata (DFA)

* Example

" Input string:01 101

Ol10]

4
HTO=Q,

Theory of Computation 14

Deterministic Finite Automata (DFA)

* Example
" Input string:01 101 ‘

Ol10]

4
HTO=Q,

Theory of Computation 15

Deterministic Finite Automata (DFA)

* Example
" Input string:01 101 ‘
01101
I ‘ I
> >
— (==
b 0 | \)O
0

Theory of Computation 16

Deterministic Finite Automata (DFA)

* Example
" Input string:01 101 ‘
O+101
I I ‘
> >
— (==
b 0 | \)O
0

Theory of Computation 17

Deterministic Finite Automata (DFA)

* Example
" Input string:01 101 ‘
OHOI
I I ‘
> >
— (==
b 0 | \)O
0

Theory of Computation 18

Deterministic Finite Automata (DFA)

* Example
" Input string:01 101 ‘
O1]10| :ACCEPT!
4
' '
Ob 0 | \)O

Theory of Computation 19

Deterministic Finite Automata (DFA)

* Definition of DFA
= A DFA is defined by 5-tuples

M = (Q,Z,@,CIO,F)

¢ Q is a finite set of internal states
¢ X is a finite set of symbols

* 0:0Q X X — Qis the transition function

* Every state must have a transition for every symbol
* qo is the initial state (g, € Q)

% F is a set of final states (F € Q)

Theory of Computation 20

Deterministic Finite Automata (DFA)

I I
> >
< <
b 0 | \)O
0

M = ({490, 91,92}10,1}, 0, 90, 191})

5(q0,0) = qo 6(q1,0) = qq 5(q2,0) = q,
6(q0,1) = ¢4 6(q1,1) = q 6(q2,1) = q4

Theory of Computation 21

Deterministic Finite Automata (DFA)

M = ({40, 91,92}10,1}, 9, 90, {91})

5(q0,0) = qo 6(q1,0) = qo 5(q2,0) = q,
6(qo,1) = q4 6(q1,1) = q; 6(q2,1) = q4

Transition Table

Transition Graph q 0 l
OE= 010 a0 |«
b) | \)0 *d1| o | 92
0 d2 | 42 | 41

Theory of Computation 22

Deterministic Finite Automata (DFA)

* Trap state

" Trap states in a transition graph

TRAP STATE

Theory of Computation 23

Deterministic Finite Automata (DFA)

* Extended transition function
"5Q XZT - (Q
» Connection of multiple transition functions
=5"(q,wa) = 6(6"(q,w),a)
= Example

% Then, 6*(qq,11) = q,

I I
_.. — ()= 0 e 100) — -

0

Theory of Computation 24

Deterministic Finite Automata (DFA)

* Example

* Find a DFA that recognizes the set of all strings on £ = {a, b} starting with the prefix ab
¢ ab, abb, ababa, abbaaa, abaaa => Accepted

+¢ aab, ba, bbba, baabaaa, aabbb => Rejected

Theory of Computation 25

Deterministic Finite Automata (DFA)

* Example

* Find a DFA that recognizes the set of all strings on £ = {a, b} starting with the prefix ab
¢ ab, abb, ababa, abbaaa, abaaa => Accepted

+¢ aab, ba, bbba, baabaaa, aabbb => Rejected

Theory of Computation 26

Deterministic Finite Automata (DFA)

* Example

* Find a DFA that recognizes the set of all strings on £ = {a, b} starting with the prefix ab
¢ ab, abb, ababa, abbaaa, abaaa => Accepted

+¢ aab, ba, bbba, baabaaa, aabbb => Rejected

— — —
\)a,b

Theory of Computation 27

Deterministic Finite Automata (DFA)

* Example

* Find a DFA that recognizes the set of all strings on £ = {a, b} starting with the prefix ab
¢ ab, abb, ababa, abbaaa, abaaa => Accepted

+¢ aab, ba, bbba, baabaaa, aabbb => Rejected

OIiOR O
Q;ab

Theory of Computation 28

Deterministic Finite Automata (DFA)

 Practice

= Design a DFA for the language that contains only binary strings (i.e.,Z = {0, 1})

whose bits sum to a multiple of 3
O, 111,10011,1001010111 => Accepted
* 1,101, 1111, 1110000001 => Rejected

Theory of Computation 29

Deterministic Finite Automata (DFA)

* Acceptance of a language

* The language accepted by a DFA M = (Q, %, 6, qy, F)
=>The set of all strings on X accepted by M

L(IM) ={w€eZX*:56"(qy,w) € F}

Theory of Computation 30

Deterministic Finite Automata (DFA)

* Acceptance of a language
= ab, abb, ababa, abbaaa, abaaa, ... € L(M)
" aab, ba, bbba, baabaaa, aabbb, ... € L(M)

\)b
ab

L(M) = {abw | w € {a, b}"}

Theory of Computation 31

Regular Languages

* Regular language
" A language L is called regular if and only if there exists a DFA M such that
L= L(M)
= Example

% Show that the language L = {awa:w € {a, b}*} is regular

Theory of Computation 32

Regular Languages

* Regular language

" Example

% Show that the language L = {awa:w € {a, b}*} is regular

(1) = () = @D
—> —> a
b

)

b

Theory of Computation 33

Regular Languages

* Regular language

" Example

% Show that the language L = {awa:w € {a, b}*} is regular

: <—a
Da
b
lb K{

] REGULAR!
a,

Theory of Computation 34

Regular Languages

 Practice

" Example

% Show that the language L = {w: |w| mod 3 = 0} is regular (£ = {a, b})

Theory of Computation 35

Regular Languages

* Regular language

" Example

% Show that the language L = {a"b™ | n = 0} is regular

Theory of Computation 36

Regular Languages

* Regular language

" Example
% Show that the language L = {a™b™ | n = 0} is regular
¢ We need to construct a DFA M that L = L(M)
“* But this is impossible!
* L is not regular language

* We will learn how to prove it later in this course

Theory of Computation 37

Nondeterministic Finite Automata (NFA)

* DFA vs NFA
= DFA

“* A unique transition is defined for each state and each input symbol

= NFA

“* Multiple or none (A-transition) transitions possible

_— _—

Multiple transitions A-transition

Theory of Computation 38

Nondeterministic Finite Automata (NFA)

I O,I
: :
<
0

* 1010, 101010 can be accepted

* |10, 10100 cannot be accepted

* For the case of |10

* Both q0 and g2 are possible => Accepted

Theory of Computation 39

Nondeterministic Finite Automata (NFA)

* Definition of NFA
= A NFA is defined by 5-tuples

M = (Q,Z,@,CIO,F)

¢ Q is a finite set of internal states

¢ X is a finite set of symbols

% 6:Q x (ZU{2}) - 2%is the transition function
¢ Qo is the initial state (g, € Q)

¢ F is a set of final states (F € Q)

Theory of Computation 40

Nondeterministic Finite Automata (NFA)

M = ({40,91,92}10,1}, 0, 90,{90})

6(q0,0) =0 6(q1,0) = {q0, 92} 6(q2,0) =0
6(q0,1) = {q1} 6(q1,1) = {q2} 6(q2,1) =0
6(q0,4) = {q0, 92} 6(q1,4) ={q1} 6(q2,4) = {q2}

Transition Table

Transition Graph q 0 1 A

_,—'> 0.1 =%qo| 0 {1} | 190,92}
0
w

q1 | {90,92} {92} {q1}
d> 0 0) {92}

Theory of Computation 41

Nondeterministic Finite Automata (NFA)

* Why NFA is needed?

" |n certain situations, NFAs can be utilized much more effectively than DFA

“I”

" E.g., FA for accepting strings containing a

* DFA
— —>

w

Theory of Computation 42

in third position from the end

Nondeterministic Finite Automata (NFA)

* Why NFA is needed?

" |n certain situations, NFAs can be utilized much more effectively than DFA

“I”

" E.g., FA for accepting strings containing a
* NFA

qo, I
I 0' I 0’ I
L > > >

Theory of Computation

in third position from the end

43

Nondeterministic Finite Automata (NFA)

* Why NFA is needed?

" |n certain situations, NFAs can be utilized much more effectively than DFA
(1 I "

" E.g., FA for accepting strings containing a
* NFA

in third position from the end

Easy to solve a problem and describe a complicated language concisely!

Theory of Computation 44

Nondeterministic Finite Automata (NFA)

* Acceptance of a language

* The language accepted by a NFA M = (Q, %, 6, qo, F)
=>The set of all strings on X accepted by M

L(M) = {w €28 (qew) NF # @)

" L anguage consists of all strings w

“*For which there is a walk labeled w from the initial state of the transition graph to some
final states

Theory of Computation 45

Nondeterministic Finite Automata (NFA)

* Example

= Design an NFA for the language {w € £*| w contains 011}, where £ = {0, 1}
< 011,01100, 101100, 1001011100 => Accepted
L, 11101, 11101, 1110000001 => Rejected

Theory of Computation 46

Nondeterministic Finite Automata (NFA)

* Example

= Design an NFA for the language {w € £*| w contains 011}, where £ = {0, 1}
< 011,01100, 101100, 1001011100 => Accepted
L, 11101, 11101, 1110000001 => Rejected

0,

SN
O OO0

Theory of Computation 47

Nondeterministic Finite Automata (NFA)

 Practice

= Design an NFA for the language {w € £*| w ends with 00}, where £ = {0, 1}, with three states
“ 000, 100, 101100, 1001010100 => Accepted
L, 11101, 11101, 1110000001 => Rejected

Theory of Computation 48

Equivalence of NFAs and DFAs

* Every NFA has an equivalent DFA??

" Equivalence

¢ Two finite automata, M| and M2, are said to be equivalent if

L(Ml) = L(M3)

(i.e., They both accept the same language)

Theory of Computation 49

Equivalence of NFAs and DFAs

e NFA (N — (Q,Z, 5, qO,F)) => DFA (M — (Q,)Z) 5,; CIOI» F’))

|. Create a transition table for N

NFA (example) Transition table for N
ﬂa . q a b A
o a ’ ’ = qo|quq2} | @ 90}
w *q1 | {91,921 | {90} | {91, 92}
qz 0 {90} {q2}

Theory of Computation 50

Equivalence of NFAs and DFAs

e NFA (N — (Q,Z, 5, qO,F)) => DFA (M — (QI;Z; 6,; CIOI» F,))

2. Create the DFA’s start state

¢ Set of all possible starting states in the NFA

¢ All states that can be reached from the g, by following A-transition

* In this case, {q,} will be the starting state
Transition table for N

q a b A

= qo| {qu,q21 | O {q0}
* (1 | {91, 92} {90} {91, 92}
d> 0 {90} 192}

Theory of Computation 51

Equivalence of NFAs and DFAs

e NFA (N — (Q,Z, 5, qO,F)) => DFA (M — (QI;Z; 6,; CIOI» F,))

3. Create the DFA’s transition table

“* Until no new state generated

Transition table for N Transition table for M
q a b A q a b
- qo | {91, 92} 0) {90} - {490} | 191, 92} ?

* (1 | {91, 92} {90} {91, 92}
d> 0) {90} 192}

Theory of Computation 52

Equivalence of NFAs and DFAs

e NFA (N — (Q,Z, 5, qO,F)) => DFA (M — (QI;Z; 6,; CIOI» F,))

3. Create the DFA’s transition table

“* Until no new state generated

Transition table for N Transition table for M
q a b A q a b
= qo | 191, 92} ? {90} - {q0} | 191,92} ?
*q1| {91, 92} | {q0} | {91, 92} {91,923 | 191, 2} | {90}
qz ? {q0} {92}

Theory of Computation 53

Equivalence of NFAs and DFAs

e NFA (N — (Q,Z, 5, qO,F)) => DFA (M — (QIJZ) 6,; CIOI» F,))

3. Create the DFA’s transition table

“* Until no new state generated

Transition table for N Transition table for M

q a b A q a b

= qo | 191, 92} ? {q0} - {q0} | 191,92} ?
*q1| {q1, 92} | {q0} | {91, 92} {91,923 | 191, 2} | {90}

9| 9 {q0} {92} o 0O ?

Theory of Computation o4

Equivalence of NFAs and DFAs

e NFA (N — (Q,Z, 5, qO,F)) => DFA (M — (QIJZ) 6,; CIOI» F,))

4. Determining the final state of the DFA

¢ Sets of states that contain at least one final state from the NFA

Transition table for N Transition table for M

q a b A q a b

= qo | 191, 92} ? {q0} - {q0} | 191,92} ?
*q1| {q1, 92} | {q0} | {91, 92} *{q1, 42} | 191,92} | {do}

9| 9 {q0} {92} o 0O ?

Theory of Computation 55

Equivalence of NFAs and DFAs
* NFA (N =(0Q,%,6,q0,F))=>DFA (M = (Q',%,6',q,', F"))

Transition graph for M
qa

a
> Transition table for M
—
-+
b
l b

q a b

- {q0} | {91, q2} 1)

i {91,923} | {91,921 | {90}
|)) 1)

Theory of Computation 56

Equivalence of NFAs and DFAs

e NFA (N — (Q,Z, 5, qO,F)) => DFA (M — (QI;Z; 6,; CIOI» F,))

NFA (example) Transition graph for M
a d
a A a q
B — ©
<
b
; lb

Theory of Computation 57

Equivalence of NFAs and DFAs

* Practice
= Converting NFA to DFA (2 = {a, b})

: b
— > >
\ A/

Theory of Computation 58

Equivalence of NFAs and DFAs

* Practice
= Converting NFA to DFA

b
— (o)——()——®
\A/

Theory of Computation 59

Reduction of the number of states

* One language can be accepted by many DFAs

* One DFA => One language
" One language => many DFAs

Theory of Computation 60

Reduction of the number of states

* One language can be accepted by many DFAs

* One DFA => One language
" One language => many DFAs

) OMIOES0
_.0/' lo . koj L())I
'\‘**. ’

|\,
0

0 0,1

states reachable subsequent to §(q,, 0)
= states reachable subsequent to §(q,, 1)

Theory of Computation 61

Reduction of the number of states

* Indistinguishable states

" Two states p and q of a DFA are called indistinguishable if

d*(p,w) € F implies §*(q,w) € F,
and

5*(p,w) ¢ F implies §*(q,w) ¢ F

Theory of Computation 62

Reduction of the number of states

* Indistinguishable states

" Two states p and q of a DFA are called indistinguishable if

d*(p,w) € F implies §*(q,w) € F,
and

5*(p,w) ¢ F implies §*(q,w) ¢ F

* Reducing the number of DFA states

= finding indistinguishable pairs and merging them

Theory of Computation 63

Reduction of the number of states

* Finding and merging indistinguishable pairs

|. Remove all inaccessible states, where no path exists from the initial state

of
~

OC??O
T_
-C()x

Theory of Computation 64

Reduction of the number of states

* Finding and merging indistinguishable pairs
|. Remove all inaccessible states, where no path exists from the initial state

2. Construct a grid of pairs of states

For a pair (p, q),

qo’ ! if p € Fand g € F (or vice versa),
| 01 - (p, q) is distinguishable
ORI O |
— () b 2 '
~ . 3 -
| 0 — 4 -
0 0, O I 2 3 4

Theory of Computation 65

Reduction of the number of states

* Finding and merging indistinguishable pairs
|. Remove all inaccessible states, where no path exists from the initial state

2. Construct a grid of pairs of states

For a pair (p, q),

0 0, | ol- if p e(F an)d.qde.é F (onj \;\icslversa),
| p, q) is distinguishable
OR0. | -
0/' lo 21?2 17 -
N 3[X X X -
NOEO 41X X X 1 -
R 0o 1 2 3 4

Theory of Computation 66

Reduction of the number of states

* Finding and merging indistinguishable pairs
|. Remove all inaccessible states, where no path exists from the initial state
2. Construct a grid of pairs of states

For all pairs (p,q) and all a € %,
compute §(p,a) = p, and 6(q,a) = q,.

qo’l O K ; TR)
L) |
0 l" 21? 7 -
™ 3|X X X -
I e - 41X X X 1 -
0 0, | O | 2 3 4

Theory of Computation 67

Reduction of the number of states

* Finding and merging indistinguishable pairs
|. Remove all inaccessible states, where no path exists from the initial state

2. Construct a grid of pairs of states

0,
| .
JORIO

{0, 1} given 0 => {1, 2}
{0, 1} given | => {2, 3}
{0, 2} given 0 => {1, 2}

01l -
1?2 - {0,2} given | => {2, 4}
) {1,2} given 0 => {2,2}
o lo 21?2 - {1,2} given | => {3, 4}
~ | 3| X X X - {3,4} g?ven 0 i> {3,4)}
| e — 4|x X X 1 . {3,4} given | => {3, 4}
0 0, | O I 2 3 4

Theory of Computation 68

Reduction of the number of states

* Finding and merging indistinguishable pairs
|. Remove all inaccessible states, where no path exists from the initial state

2. Construct a grid of pairs of states

0, 1

R

O/*
)T

OO
0

0, |

{0, 1} given 0 => {1, 2}
{0, 1} given | => {2, 3}
{0, 2} given 0 => {1, 2}
{0,2} given | => {2, 4}
{1,2} given 0 => {2, 2}
{1,2} given | => {3, 4}
- {3, 4} given 0 => {3, 4}
{3,4} given | => {3, 4}

A WPN—O

©

Theory of Computation 69

Reduction of the number of states

* Finding and merging indistinguishable pairs
|. Remove all inaccessible states, where no path exists from the initial state

2. Construct a grid of pairs of states
* {q1,9,} and {q3, q.} are indistinguishable! qo’ |

3. Construct a new DFA) 1,
el

¢ Indistinguishable states => a single state

— |
%* We have three states I\‘ | .
* {90} {91, 92},and {q3, q4} @

0 0, 1

Theory of Computation 70

Reduction of the number of states

* Finding and merging indistinguishable pairs
3. Construct a new DFA

**We have three states

* {90} {91,92},and {q3, q4}

0, I
6(C[0, O) = {1 q

5(610» 1) = %) 0 —|>
* —~@_k
6'({q0}, 0) ~
RO O,
7

= {91, 92}
0

71

Theory of Computation

Reduction of the number of states

* Finding and merging indistinguishable pairs
3. Construct a new DFA

**We have three states

* {90} {91,92},and {q3, q4}

5(q0,0) = ¢4 qo’ |
B 5(q1,0) = g, |
*(do 1_ 12 5(q2,0) = q, 0/' O
! — ()b
5' ({40}, 0) | ™ '
= 5'({qo}, 1) > a:}0) | o
0, |

= {41, 92} U

= {91, 92}
0

72

Theory of Computation

Reduction of the number of states

* Finding and merging indistinguishable pairs

3. Construct a new DFA

**We have three states

* {90} {91,92},and {q3, q4}

5(q0,0) = q4
6(q0,1) = q3

¢

6,({(]0}, O)
= 6,({(]0}, 1)
=1{q1, 92}

5(q1,0) = g,
5(q2,0) = q;

¢

5,({611' CIZ}i O)
= {41, 92}

5(q1,1) = g3
5(q2,2) = qq

¢

§'({q1, 423 D
= {43, 94}

6'({93, 94}, 0)
— 5,({613' CI4}, 1)
= {493, 94}

Theory of Computation

Reduction of the number of states

* Finding and merging indistinguishable pairs

3. Construct a new DFA

~©0=9@

0 0, |

Theory of Computation 74

Reduction of the number of states

* Practice (2 = {a, b})

/ /Da,b
— :
a

Theory of Computation 75

Reduction of the number of states

 Practice

O

leb

*\./7

Theory of Computation 76

Next Lecture

* Regular Languages and Regular Grammars

Theory of Computation 77

