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Automata

• An automaton

▪ An abstract model of a digital computer

• Every automaton includes some essential features

▪ Reading input (a string over an alphabet)

❖Automaton can read it but not change

▪ Producing output

▪ Containing a temporal storage

▪ Containing a control unit (with a finite number of internal states)
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Automata

• An automaton
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Finite Automata

• The simplest model: finite automata (finite state machines)

▪ A finite set of internal states (with no other memory)

▪ Finite automata can be used in many fields

❖ Security, compiler, network protocol, etc.
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Finite Automata

• The simplest model: finite state machines (finite automata)

▪ Example: a controller for automatic door
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Finite Automata

• The simplest model: finite state machines (finite automata)

▪ Example: a controller for automatic door

❖ If a person is on the Front, the door should open

❖ It should remain open long enough to pass all the way through

❖The door should not strike some standing behind it! (Rear)
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Finite Automata

• The simplest model: finite state machines (finite automata)

▪ Example: a controller for automatic door

❖ State transition table
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Finite Automata

• The simplest model: finite state machines (finite automata)

▪ Example: a controller for automatic door

❖ State transition table

❖ State transition graph
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Deterministic Finite Automata (DFA)

• DFA

▪ Containing a finite number of internal states

❖ Including a starting (initial) state and final (accepting) states

▪ Processing an input string, consisting of a sequence of symbols

▪ Making transitions for one state to another

❖ Depending on the current state and input symbol

▪ Producing output

❖Accept or Reject
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Deterministic Finite Automata (DFA)

• Example
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Deterministic Finite Automata (DFA)

• Example

▪ Input string: 01101
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Deterministic Finite Automata (DFA)

• Example

▪ Input string: 01101
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Deterministic Finite Automata (DFA)

• Example

▪ Input string: 01101
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Deterministic Finite Automata (DFA)

• Example

▪ Input string: 01101
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Deterministic Finite Automata (DFA)

• Example

▪ Input string: 01101
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Deterministic Finite Automata (DFA)

• Example

▪ Input string: 01101
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Deterministic Finite Automata (DFA)

• Definition of DFA

▪ A DFA is defined by 5-tuples

❖ 𝑄 is a finite set of internal states

❖ Σ is a finite set of symbols

❖ 𝛿: 𝑄 × Σ → Q is the transition function

• Every state must have a transition for every symbol

❖ 𝑞0 is the initial state (𝑞0 ∈ 𝑄)

❖ 𝐹 is a set of final states (𝐹 ⊆ 𝑄)
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𝑀 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹)



Deterministic Finite Automata (DFA)
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𝑀 = ({𝑞0, 𝑞1, 𝑞2}, {0, 1}, 𝛿, 𝑞0, {𝑞1})

𝛿 𝑞0, 0 = 𝑞0

𝛿 𝑞0, 1 = 𝑞1

𝛿 𝑞1, 0 = 𝑞0

𝛿 𝑞1, 1 = 𝑞2

𝛿 𝑞2, 0 = 𝑞2
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Deterministic Finite Automata (DFA)
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Transition Graph

𝑀 = ({𝑞0, 𝑞1, 𝑞2}, {0, 1}, 𝛿, 𝑞0, {𝑞1})

𝛿 𝑞0, 0 = 𝑞0

𝛿 𝑞0, 1 = 𝑞1

𝛿 𝑞1, 0 = 𝑞0

𝛿 𝑞1, 1 = 𝑞2

𝛿 𝑞2, 0 = 𝑞2

𝛿 𝑞2, 1 = 𝑞1

Transition Table

𝑞 0 1

→ 𝑞0 𝑞0 𝑞1

∗ 𝑞1 𝑞0 𝑞2

𝑞2 𝑞2 𝑞1



Deterministic Finite Automata (DFA)

• Trap state

▪ Trap states in a transition graph
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Deterministic Finite Automata (DFA)

• Extended transition function

▪ 𝛿∗: 𝑄 × Σ∗ → 𝑄

▪ Connection of multiple transition functions

▪ 𝛿∗ 𝑞,𝑤𝑎 = 𝛿(𝛿∗ 𝑞,𝑤 , 𝑎)

▪ Example

❖ 𝛿 𝑞0, 1 = 𝑞1 and 𝛿 𝑞1, 1 = 𝑞2

❖Then, 𝛿∗ 𝑞0, 11 = 𝑞2
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Deterministic Finite Automata (DFA)

• Example

▪ Find a DFA that recognizes the set of all strings on Σ = {𝑎, 𝑏} starting with the prefix 𝑎𝑏

❖ ab, abb, ababa, abbaaa, abaaa => Accepted

❖ aab, ba, bbba, baabaaa, aabbb => Rejected
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Deterministic Finite Automata (DFA)

• Example

▪ Find a DFA that recognizes the set of all strings on Σ = {𝑎, 𝑏} starting with the prefix 𝑎𝑏

❖ ab, abb, ababa, abbaaa, abaaa => Accepted

❖ aab, ba, bbba, baabaaa, aabbb => Rejected
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Deterministic Finite Automata (DFA)

• Example

▪ Find a DFA that recognizes the set of all strings on Σ = {𝑎, 𝑏} starting with the prefix 𝑎𝑏

❖ ab, abb, ababa, abbaaa, abaaa => Accepted

❖ aab, ba, bbba, baabaaa, aabbb => Rejected
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Deterministic Finite Automata (DFA)

• Example

▪ Find a DFA that recognizes the set of all strings on Σ = {𝑎, 𝑏} starting with the prefix 𝑎𝑏

❖ ab, abb, ababa, abbaaa, abaaa => Accepted

❖ aab, ba, bbba, baabaaa, aabbb => Rejected
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Deterministic Finite Automata (DFA)

• Practice

▪ Design a DFA for the language that contains only binary strings (i.e., Σ = {0, 1} ) 

whose bits sum to a multiple of 3

❖ 0, 111, 1011, 1001010111 => Accepted

❖ 1, 101, 1111, 1110000001 => Rejected
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Deterministic Finite Automata (DFA)

• Acceptance of a language

▪ The language accepted by a DFA 𝑀 = 𝑄, Σ, 𝛿, 𝑞0, 𝐹

=> The set of all strings on Σ accepted by 𝑀
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𝐿 𝑀 = {𝑤 ∈ Σ∗: 𝛿∗ 𝑞0, 𝑤 ∈ 𝐹}



Deterministic Finite Automata (DFA)

• Acceptance of a language

▪ ab, abb, ababa, abbaaa, abaaa, … ∈ 𝐿(𝑀)

▪ aab, ba, bbba, baabaaa, aabbb, … ∉ 𝐿(𝑀)

Theory of Computation 31

𝐿 𝑀 = 𝑎𝑏𝑤 𝑤 ∈ 𝑎, 𝑏 ∗}



Regular Languages

• Regular language

▪ A language L is called regular if and only if there exists a DFA M such that

▪ Example

❖ Show that the language 𝐿 = {𝑎𝑤𝑎:𝑤 ∈ 𝑎, 𝑏 ∗} is regular
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𝐿 = 𝐿 𝑀



Regular Languages

• Regular language

▪ Example

❖ Show that the language 𝐿 = {𝑎𝑤𝑎:𝑤 ∈ 𝑎, 𝑏 ∗} is regular
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Regular Languages

• Regular language

▪ Example

❖ Show that the language 𝐿 = {𝑎𝑤𝑎:𝑤 ∈ 𝑎, 𝑏 ∗} is regular

Theory of Computation 34

b

𝑞3

b

a, b
REGULAR!

𝑞0 𝑞1 𝑞2
a

a

b

a



Regular Languages

• Practice

▪ Example

❖ Show that the language 𝐿 = {𝑤: 𝑤 𝑚𝑜𝑑 3 = 0} is regular (Σ = {𝑎, 𝑏}) 

Theory of Computation 35



Regular Languages

• Regular language

▪ Example

❖ Show that the language 𝐿 = 𝑎𝑛𝑏𝑛 𝑛 ≥ 0} is regular
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Regular Languages

• Regular language

▪ Example

❖ Show that the language 𝐿 = 𝑎𝑛𝑏𝑛 𝑛 ≥ 0} is regular

❖We need to construct a DFA M that L = L(M)

❖ But this is impossible!

• L is not regular language

• We will learn how to prove it later in this course

Theory of Computation 37



Nondeterministic Finite Automata (NFA)

• DFA vs NFA

▪ DFA

❖A unique transition is defined for each state and each input symbol

▪ NFA

❖ Multiple or none (𝜆-transition) transitions possible
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Multiple transitions 𝜆-transition



Nondeterministic Finite Automata (NFA)
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𝑞0 𝑞1 𝑞2
0, 11

0

𝜆

• 1010, 101010 can be accepted

• 110, 10100 cannot be accepted

• For the case of 10

▪ Both q0 and q2 are possible => Accepted



Nondeterministic Finite Automata (NFA)

• Definition of NFA

▪ A NFA is defined by 5-tuples

❖ 𝑄 is a finite set of internal states

❖ Σ is a finite set of symbols

❖ 𝜹: 𝑸 × (𝚺 ∪ 𝝀 ) → 𝟐𝐐 is the transition function

❖𝑞0 is the initial state (𝑞0 ∈ 𝑄)

❖ 𝐹 is a set of final states (𝐹 ⊆ 𝑄)
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𝑀 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹)



Nondeterministic Finite Automata (NFA)
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Transition Graph

𝑀 = ({𝑞0, 𝑞1, 𝑞2}, {0, 1}, 𝛿, 𝑞0, {𝑞0})

Transition Table

𝑞 0 1 𝜆

→∗ 𝑞0 ∅ {𝑞1} {𝑞0, 𝑞2}

𝑞1 {𝑞0, 𝑞2} {𝑞2} {𝑞1}

𝑞2 ∅ ∅ {𝑞2}

𝛿 𝑞0, 0 = ∅

𝛿 𝑞0, 1 = {𝑞1}

𝛿 𝑞1, 0 = {𝑞0, 𝑞2}

𝛿 𝑞1, 1 = {𝑞2}

𝛿 𝑞2, 0 = ∅

𝛿 𝑞2, 1 = ∅

𝛿 𝑞0, 𝜆 = {𝑞0, 𝑞2} 𝛿 𝑞1, 𝜆 = {𝑞1} 𝛿 𝑞2, 𝜆 = {𝑞2}



Nondeterministic Finite Automata (NFA)

• Why NFA is needed?

▪ In certain situations, NFAs can be utilized much more effectively than DFA

▪ E.g., FA for accepting strings containing a “1” in third position from the end

❖ DFA
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Nondeterministic Finite Automata (NFA)

• Why NFA is needed?

▪ In certain situations, NFAs can be utilized much more effectively than DFA

▪ E.g., FA for accepting strings containing a “1” in third position from the end

❖ NFA
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Nondeterministic Finite Automata (NFA)

• Why NFA is needed?

▪ In certain situations, NFAs can be utilized much more effectively than DFA

▪ E.g., FA for accepting strings containing a “1” in third position from the end

❖ NFA

Easy to solve a problem and describe a complicated language concisely!
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Nondeterministic Finite Automata (NFA)

• Acceptance of a language

▪ The language accepted by a NFA 𝑀 = 𝑄, Σ, 𝛿, 𝑞0, 𝐹

=> The set of all strings on Σ accepted by 𝑀

▪ Language consists of all strings 𝑤

❖For which there is a walk labeled 𝑤 from the initial state of the transition graph to some 

final states
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𝐿 𝑀 = {𝑤 ∈ Σ∗: 𝛿∗ 𝑞0, 𝑤 ∩ 𝐹 ≠ ∅ }



Nondeterministic Finite Automata (NFA)

• Example

▪ Design an NFA for the language 𝑤 ∈ Σ∗ 𝑤 contains 011}, where Σ = {0, 1}

❖ 011, 01100, 101100, 1001011100 => Accepted

❖ 1, 11, 101, 11101, 1110000001 => Rejected
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Nondeterministic Finite Automata (NFA)

• Example

▪ Design an NFA for the language 𝑤 ∈ Σ∗ 𝑤 contains 011}, where Σ = {0, 1}

❖ 011, 01100, 101100, 1001011100 => Accepted

❖ 1, 11, 101, 11101, 1110000001 => Rejected
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Nondeterministic Finite Automata (NFA)

• Practice

▪ Design an NFA for the language 𝑤 ∈ Σ∗ 𝑤 ends with 00}, where Σ = {0, 1}, with three states

❖ 000, 100, 101100, 1001010100 => Accepted

❖ 1, 11, 101, 11101, 1110000001 => Rejected
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Equivalence of NFAs and DFAs

• Every NFA has an equivalent DFA??

▪ Equivalence

❖Two finite automata, M1 and M2, are said to be equivalent if

(i.e., They both accept the same language)
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𝐿 𝑀1 = 𝐿(𝑀2)



Equivalence of NFAs and DFAs

• NFA (𝑁 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹)) => DFA (𝑀 = (𝑄′, 𝛴, 𝛿′, 𝑞0′, 𝐹′))

1. Create a transition table for 𝑁
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NFA (example) Transition table for N

𝑞 a b 𝜆

→ 𝑞0 {𝑞1, 𝑞2} ∅ {𝑞0}

∗ 𝑞1 {𝑞1, 𝑞2} {𝑞0} {𝑞1, 𝑞2}

𝑞2 ∅ {𝑞0} {𝑞2}



Equivalence of NFAs and DFAs

• NFA (𝑁 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹)) => DFA (𝑀 = (𝑄′, Σ, 𝛿′, 𝑞0′, 𝐹′))

2. Create the DFA’s start state

❖ Set of all possible starting states in the NFA

❖All states that can be reached from the 𝑞0 by following 𝜆-transition

• In this case, {𝑞0} will be the starting state
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Transition table for N

𝑞 a b 𝜆

→ 𝑞0 {𝑞1, 𝑞2} ∅ {𝑞0}

∗ 𝑞1 {𝑞1, 𝑞2} {𝑞0} {𝑞1, 𝑞2}

𝑞2 ∅ {𝑞0} {𝑞2}



Equivalence of NFAs and DFAs

• NFA (𝑁 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹)) => DFA (𝑀 = (𝑄′, Σ, 𝛿′, 𝑞0′, 𝐹′))

3. Create the DFA’s transition table

❖ Until no new state generated
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Transition table for N

𝑞 a b 𝜆

→ 𝑞0 {𝑞1, 𝑞2} ∅ {𝑞0}

∗ 𝑞1 {𝑞1, 𝑞2} {𝑞0} {𝑞1, 𝑞2}

𝑞2 ∅ {𝑞0} {𝑞2}

Transition table for M

𝑞 a b

→ {𝑞0} {𝑞1, 𝑞2} ∅



Equivalence of NFAs and DFAs

• NFA (𝑁 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹)) => DFA (𝑀 = (𝑄′, Σ, 𝛿′, 𝑞0′, 𝐹′))

3. Create the DFA’s transition table

❖ Until no new state generated
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Transition table for N

𝑞 a b 𝜆

→ 𝑞0 {𝑞1, 𝑞2} ∅ {𝑞0}

∗ 𝑞1 {𝑞1, 𝑞2} {𝑞0} {𝑞1, 𝑞2}

𝑞2 ∅ {𝑞0} {𝑞2}

Transition table for M

𝑞 a b

→ {𝑞0} {𝑞1, 𝑞2} ∅

{𝑞1, 𝑞2} {𝑞1, 𝑞2} {𝑞0}



Equivalence of NFAs and DFAs

• NFA (𝑁 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹)) => DFA (𝑀 = (𝑄′, Σ, 𝛿′, 𝑞0′, 𝐹′))

3. Create the DFA’s transition table

❖ Until no new state generated
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Transition table for N

𝑞 a b 𝜆

→ 𝑞0 {𝑞1, 𝑞2} ∅ {𝑞0}

∗ 𝑞1 {𝑞1, 𝑞2} {𝑞0} {𝑞1, 𝑞2}

𝑞2 ∅ {𝑞0} {𝑞2}

Transition table for M

𝑞 a b

→ {𝑞0} {𝑞1, 𝑞2} ∅

{𝑞1, 𝑞2} {𝑞1, 𝑞2} {𝑞0}

∅ ∅ ∅



Equivalence of NFAs and DFAs

• NFA (𝑁 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹)) => DFA (𝑀 = (𝑄′, Σ, 𝛿′, 𝑞0′, 𝐹′))

4. Determining the final state of the DFA

❖ Sets of states that contain at least one final state from the NFA
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Transition table for N

𝑞 a b 𝜆

→ 𝑞0 {𝑞1, 𝑞2} ∅ {𝑞0}

∗ 𝑞1 {𝑞1, 𝑞2} {𝑞0} {𝑞1, 𝑞2}

𝑞2 ∅ {𝑞0} {𝑞2}

Transition table for M

𝑞 a b

→ {𝑞0} {𝑞1, 𝑞2} ∅

∗ {𝑞1, 𝑞2} {𝑞1, 𝑞2} {𝑞0}

∅ ∅ ∅



Equivalence of NFAs and DFAs

• NFA (𝑁 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹)) => DFA (𝑀 = (𝑄′, Σ, 𝛿′, 𝑞0′, 𝐹′))
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Transition table for M

𝑞 a b

→ {𝑞0} {𝑞1, 𝑞2} ∅

∗ {𝑞1, 𝑞2} {𝑞1, 𝑞2} {𝑞0}

∅ ∅ ∅

Transition graph for M



Equivalence of NFAs and DFAs

• NFA (𝑁 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹)) => DFA (𝑀 = (𝑄′, Σ, 𝛿′, 𝑞0′, 𝐹′))
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Transition graph for MNFA (example)



Equivalence of NFAs and DFAs

• Practice

▪ Converting NFA to DFA (𝛴 = {𝑎, 𝑏})
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Equivalence of NFAs and DFAs

• Practice

▪ Converting NFA to DFA
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Reduction of the number of states

• One language can be accepted by many DFAs

▪ One DFA => One language

▪ One language => many DFAs
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Reduction of the number of states

• One language can be accepted by many DFAs

▪ One DFA => One language

▪ One language => many DFAs
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states reachable subsequent to 𝛿 𝑞0, 0
= states reachable subsequent to 𝛿 𝑞0, 1



Reduction of the number of states

• Indistinguishable states

▪ Two states p and q of a DFA are called indistinguishable if
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𝛿∗ 𝑝,𝑤 ∈ 𝐹 implies 𝛿∗ 𝑞, 𝑤 ∈ 𝐹, 

and

𝛿∗ 𝑝,𝑤 ∉ 𝐹 implies 𝛿∗ 𝑞, 𝑤 ∉ 𝐹



Reduction of the number of states

• Indistinguishable states

▪ Two states p and q of a DFA are called indistinguishable if

▪ Reducing the number of DFA states 

= finding indistinguishable pairs and merging them
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𝛿∗ 𝑝,𝑤 ∈ 𝐹 implies 𝛿∗ 𝑞, 𝑤 ∈ 𝐹, 

and

𝛿∗ 𝑝,𝑤 ∉ 𝐹 implies 𝛿∗ 𝑞, 𝑤 ∉ 𝐹



Reduction of the number of states

• Finding and merging indistinguishable pairs

1. Remove all inaccessible states, where no path exists from the initial state
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Reduction of the number of states

• Finding and merging indistinguishable pairs

1. Remove all inaccessible states, where no path exists from the initial state

2. Construct a grid of pairs of states
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For a pair 𝑝, 𝑞 , 

if 𝑝 ∈ 𝐹 and 𝑞 ∉ 𝐹 (or vice versa),

𝑝, 𝑞 is distinguishable



Reduction of the number of states

• Finding and merging indistinguishable pairs

1. Remove all inaccessible states, where no path exists from the initial state

2. Construct a grid of pairs of states
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For a pair 𝑝, 𝑞 , 

if 𝑝 ∈ 𝐹 and 𝑞 ∉ 𝐹 (or vice versa),

𝑝, 𝑞 is distinguishable



Reduction of the number of states

• Finding and merging indistinguishable pairs

1. Remove all inaccessible states, where no path exists from the initial state

2. Construct a grid of pairs of states

Theory of Computation 67

0

1

2

3

4

-

?

?

X

X

0

-

?

X

X

1

-

X

X

2

-

?

3

-

4

For all pairs 𝑝, 𝑞 and all 𝑎 ∈ Σ,

compute 𝛿 𝑝, 𝑎 = 𝑝𝑎 and 𝛿 𝑞, 𝑎 = 𝑞𝑎.

If the pair 𝑝𝑎, 𝑞𝑎 is distinguishable, 

then 𝑝, 𝑞 is distinguishable



Reduction of the number of states

• Finding and merging indistinguishable pairs

1. Remove all inaccessible states, where no path exists from the initial state

2. Construct a grid of pairs of states
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{0, 1} given 0 => {1, 2}

{0, 1} given 1 => {2, 3} 

{0, 2} given 0 => {1, 2}

{0, 2} given 1 => {2, 4}

{1, 2} given 0 => {2, 2}

{1, 2} given 1 => {3, 4}

{3, 4} given 0 => {3, 4}

{3, 4} given 1 => {3, 4}



Reduction of the number of states

• Finding and merging indistinguishable pairs

1. Remove all inaccessible states, where no path exists from the initial state

2. Construct a grid of pairs of states
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{0, 1} given 0 => {1, 2}

{0, 1} given 1 => {2, 3} 

{0, 2} given 0 => {1, 2}

{0, 2} given 1 => {2, 4}

{1, 2} given 0 => {2, 2}

{1, 2} given 1 => {3, 4}

{3, 4} given 0 => {3, 4}

{3, 4} given 1 => {3, 4}



Reduction of the number of states

• Finding and merging indistinguishable pairs

1. Remove all inaccessible states, where no path exists from the initial state

2. Construct a grid of pairs of states

❖ {𝑞1, 𝑞2} and  {𝑞3, 𝑞4} are indistinguishable!

3. Construct a new DFA

❖ Indistinguishable states => a single state

❖We have three states

• {𝑞0}, {𝑞1, 𝑞2}, and {𝑞3, 𝑞4}

Theory of Computation 70



Reduction of the number of states

• Finding and merging indistinguishable pairs

3. Construct a new DFA

❖We have three states

• {𝑞0}, {𝑞1, 𝑞2}, and {𝑞3, 𝑞4}
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𝛿 𝑞0, 0 = 𝑞1

𝛿 𝑞0, 1 = 𝑞2

𝛿′ 𝑞0 , 0

= 𝛿′ 𝑞0 , 1

= {𝑞1, 𝑞2}



Reduction of the number of states

• Finding and merging indistinguishable pairs

3. Construct a new DFA

❖We have three states

• {𝑞0}, {𝑞1, 𝑞2}, and {𝑞3, 𝑞4}
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𝛿 𝑞0, 0 = 𝑞1

𝛿 𝑞0, 1 = 𝑞2

𝛿′ 𝑞0 , 0

= 𝛿′ 𝑞0 , 1

= {𝑞1, 𝑞2}

𝛿 𝑞1, 0 = 𝑞2

𝛿 𝑞2, 0 = 𝑞2

𝛿′ 𝑞1, 𝑞2 , 0

= {𝑞1, 𝑞2}



Reduction of the number of states

• Finding and merging indistinguishable pairs

3. Construct a new DFA

❖We have three states

• {𝑞0}, {𝑞1, 𝑞2}, and {𝑞3, 𝑞4}
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𝛿 𝑞0, 0 = 𝑞1

𝛿 𝑞0, 1 = 𝑞2

𝛿′ 𝑞0 , 0

= 𝛿′ 𝑞0 , 1

= {𝑞1, 𝑞2}

𝛿 𝑞1, 0 = 𝑞2

𝛿 𝑞2, 0 = 𝑞2

𝛿′ 𝑞1, 𝑞2 , 0

= {𝑞1, 𝑞2}

𝛿 𝑞1, 1 = 𝑞3

𝛿 𝑞2, 2 = 𝑞4

𝛿′ 𝑞1, 𝑞2 , 1

= {𝑞3, 𝑞4}

𝛿′ 𝑞3, 𝑞4 , 0

= {𝑞3, 𝑞4}

= 𝛿′ 𝑞3, 𝑞4 , 1



Reduction of the number of states

• Finding and merging indistinguishable pairs

3. Construct a new DFA
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Reduction of the number of states

• Practice (𝜮 = {𝒂, 𝒃})
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Reduction of the number of states

• Practice
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Next Lecture

• Regular Languages and Regular Grammars
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