
Please check your attendance
using Blackboard!

1Theory of Computation

COSE215: Theory of Computation

Seunghoon Woo

Fall 2023

2Theory of Computation

Lecture 2

Finite Automata

Contents

• Finite Automata

▪ Deterministic Finite Automata (DFA)

▪ Nondeterministic Finite Automata (NFA)

Theory of Computation 3

Automata

Theory of Computation 4

Automata

• An automaton

▪ An abstract model of a digital computer

• Every automaton includes some essential features

▪ Reading input (a string over an alphabet)

❖Automaton can read it but not change

▪ Producing output

▪ Containing a temporal storage

▪ Containing a control unit (with a finite number of internal states)

Theory of Computation 5

Automata

• An automaton

Theory of Computation 6

Input File

Sto
rageControl Unit

Output

Finite Automata

• The simplest model: finite automata (finite state machines)

▪ A finite set of internal states (with no other memory)

▪ Finite automata can be used in many fields

❖ Security, compiler, network protocol, etc.

Theory of Computation 7

Finite Automata

• The simplest model: finite state machines (finite automata)

▪ Example: a controller for automatic door

Theory of Computation 8

Front Rear

OPEN

Front Rear

CLOSED

Finite Automata

• The simplest model: finite state machines (finite automata)

▪ Example: a controller for automatic door

❖ If a person is on the Front, the door should open

❖ It should remain open long enough to pass all the way through

❖The door should not strike some standing behind it! (Rear)

Theory of Computation 9

Front Rear

OPEN

Front Rear

CLOSED

Finite Automata

• The simplest model: finite state machines (finite automata)

▪ Example: a controller for automatic door

❖ State transition table

Theory of Computation 10

NEITHER FRONT REAR BOTH

CLOSED CLOSED OPEN CLOSED CLOSED

OPEN CLOSED OPEN OPEN OPEN

Front Rear

OPEN

Front Rear

CLOSED

Finite Automata

• The simplest model: finite state machines (finite automata)

▪ Example: a controller for automatic door

❖ State transition table

❖ State transition graph

Theory of Computation 11

NEITHER FRONT REAR BOTH

CLOSED CLOSED OPEN CLOSED CLOSED

OPEN CLOSED OPEN OPEN OPEN

OPENFRONT

REAR

BOTH

CLOSED NEITHER

REAR

BOTH

NEITHER

FRONT

Deterministic Finite Automata (DFA)

• DFA

▪ Containing a finite number of internal states

❖ Including a starting (initial) state and final (accepting) states

▪ Processing an input string, consisting of a sequence of symbols

▪ Making transitions for one state to another

❖ Depending on the current state and input symbol

▪ Producing output

❖Accept or Reject

Theory of Computation 12

Deterministic Finite Automata (DFA)

• Example

Theory of Computation 13

S3

1

0

0
0

𝑞0 𝑞1 𝑞2

1

1

Starting
state

Accepting
state

Deterministic Finite Automata (DFA)

• Example

▪ Input string: 01101

Theory of Computation 14

01101

S3

1

0

0
0

𝑞0 𝑞1 𝑞2

1

1

Deterministic Finite Automata (DFA)

• Example

▪ Input string: 01101

Theory of Computation 15

01101

S3

1

0

0
0

𝑞0 𝑞1 𝑞2

1

1

Deterministic Finite Automata (DFA)

• Example

▪ Input string: 01101

Theory of Computation 16

01101

S3

1

0

0
0

𝑞0 𝑞1 𝑞2

1

1

Deterministic Finite Automata (DFA)

• Example

▪ Input string: 01101

Theory of Computation 17

01101

S3

1

0

0
0

𝑞0 𝑞1 𝑞2

1

1

Deterministic Finite Automata (DFA)

• Example

▪ Input string: 01101

Theory of Computation 18

01101

S3

1

0

0
0

𝑞0 𝑞1 𝑞2

1

1

Deterministic Finite Automata (DFA)

• Example

▪ Input string: 01101

Theory of Computation 19

01101 : ACCEPT!

S3

1

0

0
0

𝑞0 𝑞1 𝑞2

1

1

Deterministic Finite Automata (DFA)

• Definition of DFA

▪ A DFA is defined by 5-tuples

❖ 𝑄 is a finite set of internal states

❖ Σ is a finite set of symbols

❖ 𝛿: 𝑄 × Σ → Q is the transition function

• Every state must have a transition for every symbol

❖ 𝑞0 is the initial state (𝑞0 ∈ 𝑄)

❖ 𝐹 is a set of final states (𝐹 ⊆ 𝑄)

Theory of Computation 20

𝑀 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹)

Deterministic Finite Automata (DFA)

Theory of Computation 21

𝑀 = ({𝑞0, 𝑞1, 𝑞2}, {0, 1}, 𝛿, 𝑞0, {𝑞1})

𝛿 𝑞0, 0 = 𝑞0

𝛿 𝑞0, 1 = 𝑞1

𝛿 𝑞1, 0 = 𝑞0

𝛿 𝑞1, 1 = 𝑞2

𝛿 𝑞2, 0 = 𝑞2

𝛿 𝑞2, 1 = 𝑞1

S3

1

0

0
0

𝑞0 𝑞1 𝑞2

1

1

Deterministic Finite Automata (DFA)

Theory of Computation 22

Transition Graph

𝑀 = ({𝑞0, 𝑞1, 𝑞2}, {0, 1}, 𝛿, 𝑞0, {𝑞1})

𝛿 𝑞0, 0 = 𝑞0

𝛿 𝑞0, 1 = 𝑞1

𝛿 𝑞1, 0 = 𝑞0

𝛿 𝑞1, 1 = 𝑞2

𝛿 𝑞2, 0 = 𝑞2

𝛿 𝑞2, 1 = 𝑞1

Transition Table

𝑞 0 1

→ 𝑞0 𝑞0 𝑞1

∗ 𝑞1 𝑞0 𝑞2

𝑞2 𝑞2 𝑞1

Deterministic Finite Automata (DFA)

• Trap state

▪ Trap states in a transition graph

Theory of Computation 23

𝑞0

S3𝑞1

𝑞2

0

1

0, 1

0, 1

TRAP STATE

Deterministic Finite Automata (DFA)

• Extended transition function

▪ 𝛿∗: 𝑄 × Σ∗ → 𝑄

▪ Connection of multiple transition functions

▪ 𝛿∗ 𝑞,𝑤𝑎 = 𝛿(𝛿∗ 𝑞,𝑤 , 𝑎)

▪ Example

❖ 𝛿 𝑞0, 1 = 𝑞1 and 𝛿 𝑞1, 1 = 𝑞2

❖Then, 𝛿∗ 𝑞0, 11 = 𝑞2

Theory of Computation 24

𝛿∗ 𝑞0, 100 = ?

Deterministic Finite Automata (DFA)

• Example

▪ Find a DFA that recognizes the set of all strings on Σ = {𝑎, 𝑏} starting with the prefix 𝑎𝑏

❖ ab, abb, ababa, abbaaa, abaaa => Accepted

❖ aab, ba, bbba, baabaaa, aabbb => Rejected

Theory of Computation 25

Deterministic Finite Automata (DFA)

• Example

▪ Find a DFA that recognizes the set of all strings on Σ = {𝑎, 𝑏} starting with the prefix 𝑎𝑏

❖ ab, abb, ababa, abbaaa, abaaa => Accepted

❖ aab, ba, bbba, baabaaa, aabbb => Rejected

Theory of Computation 26

𝑞0

Deterministic Finite Automata (DFA)

• Example

▪ Find a DFA that recognizes the set of all strings on Σ = {𝑎, 𝑏} starting with the prefix 𝑎𝑏

❖ ab, abb, ababa, abbaaa, abaaa => Accepted

❖ aab, ba, bbba, baabaaa, aabbb => Rejected

Theory of Computation 27

𝑞0 𝑞1 𝑞2
a b

a, b

Deterministic Finite Automata (DFA)

• Example

▪ Find a DFA that recognizes the set of all strings on Σ = {𝑎, 𝑏} starting with the prefix 𝑎𝑏

❖ ab, abb, ababa, abbaaa, abaaa => Accepted

❖ aab, ba, bbba, baabaaa, aabbb => Rejected

Theory of Computation 28

𝑞3

𝑞0 𝑞1 𝑞2
a b

a, b
a

b

a, b

Deterministic Finite Automata (DFA)

• Practice

▪ Design a DFA for the language that contains only binary strings (i.e., Σ = {0, 1})

whose bits sum to a multiple of 3

❖ 0, 111, 1011, 1001010111 => Accepted

❖ 1, 101, 1111, 1110000001 => Rejected

Theory of Computation 29

Deterministic Finite Automata (DFA)

• Acceptance of a language

▪ The language accepted by a DFA 𝑀 = 𝑄, Σ, 𝛿, 𝑞0, 𝐹

=> The set of all strings on Σ accepted by 𝑀

Theory of Computation 30

𝐿 𝑀 = {𝑤 ∈ Σ∗: 𝛿∗ 𝑞0, 𝑤 ∈ 𝐹}

Deterministic Finite Automata (DFA)

• Acceptance of a language

▪ ab, abb, ababa, abbaaa, abaaa, … ∈ 𝐿(𝑀)

▪ aab, ba, bbba, baabaaa, aabbb, … ∉ 𝐿(𝑀)

Theory of Computation 31

𝐿 𝑀 = 𝑎𝑏𝑤 𝑤 ∈ 𝑎, 𝑏 ∗}

Regular Languages

• Regular language

▪ A language L is called regular if and only if there exists a DFA M such that

▪ Example

❖ Show that the language 𝐿 = {𝑎𝑤𝑎:𝑤 ∈ 𝑎, 𝑏 ∗} is regular

Theory of Computation 32

𝐿 = 𝐿 𝑀

Regular Languages

• Regular language

▪ Example

❖ Show that the language 𝐿 = {𝑎𝑤𝑎:𝑤 ∈ 𝑎, 𝑏 ∗} is regular

Theory of Computation 33

𝑞0 𝑞1 𝑞2
a

a

b

a

b

Regular Languages

• Regular language

▪ Example

❖ Show that the language 𝐿 = {𝑎𝑤𝑎:𝑤 ∈ 𝑎, 𝑏 ∗} is regular

Theory of Computation 34

b

𝑞3

b

a, b
REGULAR!

𝑞0 𝑞1 𝑞2
a

a

b

a

Regular Languages

• Practice

▪ Example

❖ Show that the language 𝐿 = {𝑤: 𝑤 𝑚𝑜𝑑 3 = 0} is regular (Σ = {𝑎, 𝑏})

Theory of Computation 35

Regular Languages

• Regular language

▪ Example

❖ Show that the language 𝐿 = 𝑎𝑛𝑏𝑛 𝑛 ≥ 0} is regular

Theory of Computation 36

Regular Languages

• Regular language

▪ Example

❖ Show that the language 𝐿 = 𝑎𝑛𝑏𝑛 𝑛 ≥ 0} is regular

❖We need to construct a DFA M that L = L(M)

❖ But this is impossible!

• L is not regular language

• We will learn how to prove it later in this course

Theory of Computation 37

Nondeterministic Finite Automata (NFA)

• DFA vs NFA

▪ DFA

❖A unique transition is defined for each state and each input symbol

▪ NFA

❖ Multiple or none (𝜆-transition) transitions possible

Theory of Computation 38

Multiple transitions 𝜆-transition

Nondeterministic Finite Automata (NFA)

Theory of Computation 39

𝑞0 𝑞1 𝑞2
0, 11

0

𝜆

• 1010, 101010 can be accepted

• 110, 10100 cannot be accepted

• For the case of 10

▪ Both q0 and q2 are possible => Accepted

Nondeterministic Finite Automata (NFA)

• Definition of NFA

▪ A NFA is defined by 5-tuples

❖ 𝑄 is a finite set of internal states

❖ Σ is a finite set of symbols

❖ 𝜹: 𝑸 × (𝚺 ∪ 𝝀) → 𝟐𝐐 is the transition function

❖𝑞0 is the initial state (𝑞0 ∈ 𝑄)

❖ 𝐹 is a set of final states (𝐹 ⊆ 𝑄)

Theory of Computation 40

𝑀 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹)

Nondeterministic Finite Automata (NFA)

Theory of Computation 41

Transition Graph

𝑀 = ({𝑞0, 𝑞1, 𝑞2}, {0, 1}, 𝛿, 𝑞0, {𝑞0})

Transition Table

𝑞 0 1 𝜆

→∗ 𝑞0 ∅ {𝑞1} {𝑞0, 𝑞2}

𝑞1 {𝑞0, 𝑞2} {𝑞2} {𝑞1}

𝑞2 ∅ ∅ {𝑞2}

𝛿 𝑞0, 0 = ∅

𝛿 𝑞0, 1 = {𝑞1}

𝛿 𝑞1, 0 = {𝑞0, 𝑞2}

𝛿 𝑞1, 1 = {𝑞2}

𝛿 𝑞2, 0 = ∅

𝛿 𝑞2, 1 = ∅

𝛿 𝑞0, 𝜆 = {𝑞0, 𝑞2} 𝛿 𝑞1, 𝜆 = {𝑞1} 𝛿 𝑞2, 𝜆 = {𝑞2}

Nondeterministic Finite Automata (NFA)

• Why NFA is needed?

▪ In certain situations, NFAs can be utilized much more effectively than DFA

▪ E.g., FA for accepting strings containing a “1” in third position from the end

❖ DFA

Theory of Computation 42

Nondeterministic Finite Automata (NFA)

• Why NFA is needed?

▪ In certain situations, NFAs can be utilized much more effectively than DFA

▪ E.g., FA for accepting strings containing a “1” in third position from the end

❖ NFA

Theory of Computation 43

Nondeterministic Finite Automata (NFA)

• Why NFA is needed?

▪ In certain situations, NFAs can be utilized much more effectively than DFA

▪ E.g., FA for accepting strings containing a “1” in third position from the end

❖ NFA

Easy to solve a problem and describe a complicated language concisely!

Theory of Computation 44

Nondeterministic Finite Automata (NFA)

• Acceptance of a language

▪ The language accepted by a NFA 𝑀 = 𝑄, Σ, 𝛿, 𝑞0, 𝐹

=> The set of all strings on Σ accepted by 𝑀

▪ Language consists of all strings 𝑤

❖For which there is a walk labeled 𝑤 from the initial state of the transition graph to some

final states

Theory of Computation 45

𝐿 𝑀 = {𝑤 ∈ Σ∗: 𝛿∗ 𝑞0, 𝑤 ∩ 𝐹 ≠ ∅ }

Nondeterministic Finite Automata (NFA)

• Example

▪ Design an NFA for the language 𝑤 ∈ Σ∗ 𝑤 contains 011}, where Σ = {0, 1}

❖ 011, 01100, 101100, 1001011100 => Accepted

❖ 1, 11, 101, 11101, 1110000001 => Rejected

Theory of Computation 46

Nondeterministic Finite Automata (NFA)

• Example

▪ Design an NFA for the language 𝑤 ∈ Σ∗ 𝑤 contains 011}, where Σ = {0, 1}

❖ 011, 01100, 101100, 1001011100 => Accepted

❖ 1, 11, 101, 11101, 1110000001 => Rejected

Theory of Computation 47

𝑞0 𝑞3

0,1

𝑞1 𝑞2

0,1

0 1 1

Nondeterministic Finite Automata (NFA)

• Practice

▪ Design an NFA for the language 𝑤 ∈ Σ∗ 𝑤 ends with 00}, where Σ = {0, 1}, with three states

❖ 000, 100, 101100, 1001010100 => Accepted

❖ 1, 11, 101, 11101, 1110000001 => Rejected

Theory of Computation 48

Equivalence of NFAs and DFAs

• Every NFA has an equivalent DFA??

▪ Equivalence

❖Two finite automata, M1 and M2, are said to be equivalent if

(i.e., They both accept the same language)

Theory of Computation 49

𝐿 𝑀1 = 𝐿(𝑀2)

Equivalence of NFAs and DFAs

• NFA (𝑁 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹)) => DFA (𝑀 = (𝑄′, 𝛴, 𝛿′, 𝑞0′, 𝐹′))

1. Create a transition table for 𝑁

Theory of Computation 50

NFA (example) Transition table for N

𝑞 a b 𝜆

→ 𝑞0 {𝑞1, 𝑞2} ∅ {𝑞0}

∗ 𝑞1 {𝑞1, 𝑞2} {𝑞0} {𝑞1, 𝑞2}

𝑞2 ∅ {𝑞0} {𝑞2}

Equivalence of NFAs and DFAs

• NFA (𝑁 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹)) => DFA (𝑀 = (𝑄′, Σ, 𝛿′, 𝑞0′, 𝐹′))

2. Create the DFA’s start state

❖ Set of all possible starting states in the NFA

❖All states that can be reached from the 𝑞0 by following 𝜆-transition

• In this case, {𝑞0} will be the starting state

Theory of Computation 51

Transition table for N

𝑞 a b 𝜆

→ 𝑞0 {𝑞1, 𝑞2} ∅ {𝑞0}

∗ 𝑞1 {𝑞1, 𝑞2} {𝑞0} {𝑞1, 𝑞2}

𝑞2 ∅ {𝑞0} {𝑞2}

Equivalence of NFAs and DFAs

• NFA (𝑁 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹)) => DFA (𝑀 = (𝑄′, Σ, 𝛿′, 𝑞0′, 𝐹′))

3. Create the DFA’s transition table

❖ Until no new state generated

Theory of Computation 52

Transition table for N

𝑞 a b 𝜆

→ 𝑞0 {𝑞1, 𝑞2} ∅ {𝑞0}

∗ 𝑞1 {𝑞1, 𝑞2} {𝑞0} {𝑞1, 𝑞2}

𝑞2 ∅ {𝑞0} {𝑞2}

Transition table for M

𝑞 a b

→ {𝑞0} {𝑞1, 𝑞2} ∅

Equivalence of NFAs and DFAs

• NFA (𝑁 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹)) => DFA (𝑀 = (𝑄′, Σ, 𝛿′, 𝑞0′, 𝐹′))

3. Create the DFA’s transition table

❖ Until no new state generated

Theory of Computation 53

Transition table for N

𝑞 a b 𝜆

→ 𝑞0 {𝑞1, 𝑞2} ∅ {𝑞0}

∗ 𝑞1 {𝑞1, 𝑞2} {𝑞0} {𝑞1, 𝑞2}

𝑞2 ∅ {𝑞0} {𝑞2}

Transition table for M

𝑞 a b

→ {𝑞0} {𝑞1, 𝑞2} ∅

{𝑞1, 𝑞2} {𝑞1, 𝑞2} {𝑞0}

Equivalence of NFAs and DFAs

• NFA (𝑁 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹)) => DFA (𝑀 = (𝑄′, Σ, 𝛿′, 𝑞0′, 𝐹′))

3. Create the DFA’s transition table

❖ Until no new state generated

Theory of Computation 54

Transition table for N

𝑞 a b 𝜆

→ 𝑞0 {𝑞1, 𝑞2} ∅ {𝑞0}

∗ 𝑞1 {𝑞1, 𝑞2} {𝑞0} {𝑞1, 𝑞2}

𝑞2 ∅ {𝑞0} {𝑞2}

Transition table for M

𝑞 a b

→ {𝑞0} {𝑞1, 𝑞2} ∅

{𝑞1, 𝑞2} {𝑞1, 𝑞2} {𝑞0}

∅ ∅ ∅

Equivalence of NFAs and DFAs

• NFA (𝑁 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹)) => DFA (𝑀 = (𝑄′, Σ, 𝛿′, 𝑞0′, 𝐹′))

4. Determining the final state of the DFA

❖ Sets of states that contain at least one final state from the NFA

Theory of Computation 55

Transition table for N

𝑞 a b 𝜆

→ 𝑞0 {𝑞1, 𝑞2} ∅ {𝑞0}

∗ 𝑞1 {𝑞1, 𝑞2} {𝑞0} {𝑞1, 𝑞2}

𝑞2 ∅ {𝑞0} {𝑞2}

Transition table for M

𝑞 a b

→ {𝑞0} {𝑞1, 𝑞2} ∅

∗ {𝑞1, 𝑞2} {𝑞1, 𝑞2} {𝑞0}

∅ ∅ ∅

Equivalence of NFAs and DFAs

• NFA (𝑁 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹)) => DFA (𝑀 = (𝑄′, Σ, 𝛿′, 𝑞0′, 𝐹′))

Theory of Computation 56

Transition table for M

𝑞 a b

→ {𝑞0} {𝑞1, 𝑞2} ∅

∗ {𝑞1, 𝑞2} {𝑞1, 𝑞2} {𝑞0}

∅ ∅ ∅

Transition graph for M

Equivalence of NFAs and DFAs

• NFA (𝑁 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹)) => DFA (𝑀 = (𝑄′, Σ, 𝛿′, 𝑞0′, 𝐹′))

Theory of Computation 57

Transition graph for MNFA (example)

Equivalence of NFAs and DFAs

• Practice

▪ Converting NFA to DFA (𝛴 = {𝑎, 𝑏})

Theory of Computation 58

Equivalence of NFAs and DFAs

• Practice

▪ Converting NFA to DFA

Theory of Computation 59

Reduction of the number of states

• One language can be accepted by many DFAs

▪ One DFA => One language

▪ One language => many DFAs

Theory of Computation 60

Reduction of the number of states

• One language can be accepted by many DFAs

▪ One DFA => One language

▪ One language => many DFAs

Theory of Computation 61

states reachable subsequent to 𝛿 𝑞0, 0
= states reachable subsequent to 𝛿 𝑞0, 1

Reduction of the number of states

• Indistinguishable states

▪ Two states p and q of a DFA are called indistinguishable if

Theory of Computation 62

𝛿∗ 𝑝,𝑤 ∈ 𝐹 implies 𝛿∗ 𝑞, 𝑤 ∈ 𝐹,

and

𝛿∗ 𝑝,𝑤 ∉ 𝐹 implies 𝛿∗ 𝑞, 𝑤 ∉ 𝐹

Reduction of the number of states

• Indistinguishable states

▪ Two states p and q of a DFA are called indistinguishable if

▪ Reducing the number of DFA states

= finding indistinguishable pairs and merging them

Theory of Computation 63

𝛿∗ 𝑝,𝑤 ∈ 𝐹 implies 𝛿∗ 𝑞, 𝑤 ∈ 𝐹,

and

𝛿∗ 𝑝,𝑤 ∉ 𝐹 implies 𝛿∗ 𝑞, 𝑤 ∉ 𝐹

Reduction of the number of states

• Finding and merging indistinguishable pairs

1. Remove all inaccessible states, where no path exists from the initial state

Theory of Computation 64

Reduction of the number of states

• Finding and merging indistinguishable pairs

1. Remove all inaccessible states, where no path exists from the initial state

2. Construct a grid of pairs of states

Theory of Computation 65

0

1

2

3

4

-

0

-

1

-

2

-

3

-

4

For a pair 𝑝, 𝑞 ,

if 𝑝 ∈ 𝐹 and 𝑞 ∉ 𝐹 (or vice versa),

𝑝, 𝑞 is distinguishable

Reduction of the number of states

• Finding and merging indistinguishable pairs

1. Remove all inaccessible states, where no path exists from the initial state

2. Construct a grid of pairs of states

Theory of Computation 66

0

1

2

3

4

-

?

?

X

X

0

-

?

X

X

1

-

X

X

2

-

?

3

-

4

For a pair 𝑝, 𝑞 ,

if 𝑝 ∈ 𝐹 and 𝑞 ∉ 𝐹 (or vice versa),

𝑝, 𝑞 is distinguishable

Reduction of the number of states

• Finding and merging indistinguishable pairs

1. Remove all inaccessible states, where no path exists from the initial state

2. Construct a grid of pairs of states

Theory of Computation 67

0

1

2

3

4

-

?

?

X

X

0

-

?

X

X

1

-

X

X

2

-

?

3

-

4

For all pairs 𝑝, 𝑞 and all 𝑎 ∈ Σ,

compute 𝛿 𝑝, 𝑎 = 𝑝𝑎 and 𝛿 𝑞, 𝑎 = 𝑞𝑎.

If the pair 𝑝𝑎, 𝑞𝑎 is distinguishable,

then 𝑝, 𝑞 is distinguishable

Reduction of the number of states

• Finding and merging indistinguishable pairs

1. Remove all inaccessible states, where no path exists from the initial state

2. Construct a grid of pairs of states

Theory of Computation 68

0

1

2

3

4

-

?

?

X

X

0

-

?

X

X

1

-

X

X

2

-

?

3

-

4

{0, 1} given 0 => {1, 2}

{0, 1} given 1 => {2, 3}

{0, 2} given 0 => {1, 2}

{0, 2} given 1 => {2, 4}

{1, 2} given 0 => {2, 2}

{1, 2} given 1 => {3, 4}

{3, 4} given 0 => {3, 4}

{3, 4} given 1 => {3, 4}

Reduction of the number of states

• Finding and merging indistinguishable pairs

1. Remove all inaccessible states, where no path exists from the initial state

2. Construct a grid of pairs of states

Theory of Computation 69

0

1

2

3

4

-

X

X

X

X

0

-

O

X

X

1

-

X

X

2

-

O

3

-

4

{0, 1} given 0 => {1, 2}

{0, 1} given 1 => {2, 3}

{0, 2} given 0 => {1, 2}

{0, 2} given 1 => {2, 4}

{1, 2} given 0 => {2, 2}

{1, 2} given 1 => {3, 4}

{3, 4} given 0 => {3, 4}

{3, 4} given 1 => {3, 4}

Reduction of the number of states

• Finding and merging indistinguishable pairs

1. Remove all inaccessible states, where no path exists from the initial state

2. Construct a grid of pairs of states

❖ {𝑞1, 𝑞2} and {𝑞3, 𝑞4} are indistinguishable!

3. Construct a new DFA

❖ Indistinguishable states => a single state

❖We have three states

• {𝑞0}, {𝑞1, 𝑞2}, and {𝑞3, 𝑞4}

Theory of Computation 70

Reduction of the number of states

• Finding and merging indistinguishable pairs

3. Construct a new DFA

❖We have three states

• {𝑞0}, {𝑞1, 𝑞2}, and {𝑞3, 𝑞4}

Theory of Computation 71

𝛿 𝑞0, 0 = 𝑞1

𝛿 𝑞0, 1 = 𝑞2

𝛿′ 𝑞0 , 0

= 𝛿′ 𝑞0 , 1

= {𝑞1, 𝑞2}

Reduction of the number of states

• Finding and merging indistinguishable pairs

3. Construct a new DFA

❖We have three states

• {𝑞0}, {𝑞1, 𝑞2}, and {𝑞3, 𝑞4}

Theory of Computation 72

𝛿 𝑞0, 0 = 𝑞1

𝛿 𝑞0, 1 = 𝑞2

𝛿′ 𝑞0 , 0

= 𝛿′ 𝑞0 , 1

= {𝑞1, 𝑞2}

𝛿 𝑞1, 0 = 𝑞2

𝛿 𝑞2, 0 = 𝑞2

𝛿′ 𝑞1, 𝑞2 , 0

= {𝑞1, 𝑞2}

Reduction of the number of states

• Finding and merging indistinguishable pairs

3. Construct a new DFA

❖We have three states

• {𝑞0}, {𝑞1, 𝑞2}, and {𝑞3, 𝑞4}

Theory of Computation 73

𝛿 𝑞0, 0 = 𝑞1

𝛿 𝑞0, 1 = 𝑞2

𝛿′ 𝑞0 , 0

= 𝛿′ 𝑞0 , 1

= {𝑞1, 𝑞2}

𝛿 𝑞1, 0 = 𝑞2

𝛿 𝑞2, 0 = 𝑞2

𝛿′ 𝑞1, 𝑞2 , 0

= {𝑞1, 𝑞2}

𝛿 𝑞1, 1 = 𝑞3

𝛿 𝑞2, 2 = 𝑞4

𝛿′ 𝑞1, 𝑞2 , 1

= {𝑞3, 𝑞4}

𝛿′ 𝑞3, 𝑞4 , 0

= {𝑞3, 𝑞4}

= 𝛿′ 𝑞3, 𝑞4 , 1

Reduction of the number of states

• Finding and merging indistinguishable pairs

3. Construct a new DFA

Theory of Computation 74

Reduction of the number of states

• Practice (𝜮 = {𝒂, 𝒃})

Theory of Computation 75

𝑞0

𝑞1

𝑞4

a, b

𝑞2

𝑞3

b

b b

b

a

a

a

a

Reduction of the number of states

• Practice

Theory of Computation 76

Next Lecture

• Regular Languages and Regular Grammars

Theory of Computation 77

