Please check your attendance using Blackboard!

Lecture 2 Finite Automata

COSE215: Theory of Computation

Seunghoon Woo

Fall 2023

Contents

Finite Automata

- Deterministic Finite Automata (DFA)
- Nondeterministic Finite Automata (NFA)

Automata

Learning Objectives

• Why do we study the Theory of Computation?

- Theory of Computation is a field that deals with theoretical considerations on the principles of operation and computational possibilities of computers
 What can computers do?
- 2. This helps to develop the ability to model a given problem and the core of all computers and their applications
 - Model math problems into a form that computers can understand
- 3. The ideas we will discuss have some immediate and important applications (e.g., programming languages, compilers, operating systems, security, and AI)

Automata

An automaton

An abstract model of a digital computer

• Every automaton includes some essential features

Reading input (a string over an alphabet)

Automaton can read it but not change

- Producing output
- Containing a temporal storage
- Containing a control unit (with a finite number of internal states)

Automata

• An automaton

• The simplest model: finite automata (finite state machines)

- A finite set of internal states (with no other memory)
- Finite automata can be used in many fields
 - Security, compiler, network protocol, etc.

• The simplest model: finite state machines (finite automata)

Example: a controller for automatic door

• The simplest model: finite state machines (finite automata)

- Example: a controller for automatic door
 - ✤ If a person is on the Front, the door should open
 - ✤ It should remain open long enough to pass all the way through
 - The door should not strike some standing behind it! (Rear)

• The simplest model: finite state machines (finite automata)

- Example: a controller for automatic door
 - State transition table

• The simplest model: finite state machines (finite automata)

- Example: a controller for automatic door
 - State transition table

	NEITHER	FRONT	REAR	вотн
CLOSED	CLOSED	OPEN	CLOSED	CLOSED
OPEN	CLOSED	OPEN	OPEN	OPEN

✤ State transition graph

• DFA

- Containing a finite number of internal states
 - * Including a starting (initial) state and final (accepting) states
- Processing an input string, consisting of a sequence of symbols
- Making transitions for one state to another
 - Depending on the <u>current state</u> and <u>input symbol</u>
- Producing output
 - ✤ Accept or Reject

• Example

• Example

Input string: 01101

01101

- Example
 - Input string: 01101

- Example
 - Input string: 01101

- Example
 - Input string: 01101

01101

- Example
 - Input string: 01101

• Example

• Definition of DFA

A DFA is defined by 5-tuples

$$M = (Q, \Sigma, \delta, q_0, F)$$

- \clubsuit Q is a finite set of **internal states**
- * Σ is a finite set of **symbols**
- ★ $\delta: Q \times \Sigma \rightarrow Q$ is the **transition function**
 - Every state must have a transition for every symbol
- ✤ q_0 is the initial state ($q_0 \in Q$)
- ♦ *F* is a set of **final states** ($F \subseteq Q$)

$$M = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_1\})$$

$$\begin{split} \delta(q_0, 0) &= q_0 & \delta(q_1, 0) = q_0 & \delta(q_2, 0) = q_2 \\ \delta(q_0, 1) &= q_1 & \delta(q_1, 1) = q_2 & \delta(q_2, 1) = q_1 \end{split}$$

$$M = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_1\})$$

$$\begin{split} \delta(q_0, 0) &= q_0 & \delta(q_1, 0) = q_0 & \delta(q_2, 0) = q_2 \\ \delta(q_0, 1) &= q_1 & \delta(q_1, 1) = q_2 & \delta(q_2, 1) = q_1 \end{split}$$

• Trap state

Trap states in a transition graph

Extended transition function

- $\delta^*: Q \times \Sigma^* \to Q$
- Connection of multiple transition functions
- $\delta^*(q, wa) = \delta(\delta^*(q, w), a)$
- Example

$$\bigstar \ \delta(q_0, 1) = q_1 \text{ and } \delta(q_1, 1) = q_2$$

 $\clubsuit \text{ Then, } \delta^*(q_0, 11) = q_2$

$$\delta^*(q_0, 100) = ?$$

• Example

• Find a DFA that recognizes the set of all strings on $\Sigma = \{a, b\}$ starting with the prefix ab

✤ ab, abb, ababa, abbaaa, abaaa => Accepted

• Example

• Find a DFA that recognizes the set of all strings on $\Sigma = \{a, b\}$ starting with the prefix ab

✤ ab, abb, ababa, abbaaa, abaaa => Accepted

• Example

• Find a DFA that recognizes the set of all strings on $\Sigma = \{a, b\}$ starting with the prefix ab

✤ ab, abb, ababa, abbaaa, abaaa => Accepted

• Example

• Find a DFA that recognizes the set of all strings on $\Sigma = \{a, b\}$ starting with the prefix ab

✤ ab, abb, ababa, abbaaa, abaaa => Accepted

• Practice

- Design a DFA for the language that contains only binary strings (i.e., $\Sigma = \{0, 1\}$) whose bits sum to a multiple of 3
 - ✤ 0, 111, 1011, 1001010111 => Accepted
 - ✤ I, I0I, IIII, III000000I => Rejected

• Acceptance of a language

• The language accepted by a DFA $M = (Q, \Sigma, \delta, q_0, F)$

=> The set of all strings on Σ accepted by M

$$L(M) = \{ w \in \Sigma^* : \delta^*(q_0, w) \in F \}$$

• Acceptance of a language

- ab, abb, ababa, abbaaa, abaaa, $\ldots \in L(M)$
- aab, ba, bbba, baabaaa, aabbb, $\ldots \notin L(M)$

Regular language

• A language L is called regular if and only if there exists a DFA M such that

L = L(M)

Example

♦ Show that the language $L = \{awa: w \in \{a, b\}^*\}$ is regular

Regular language

Example

Show that the language $L = \{awa: w \in \{a, b\}^*\}$ is regular

Regular language

Example

Show that the language $L = \{awa: w \in \{a, b\}^*\}$ is regular

• Practice

Example

Show that the language $L = \{w: |w| \mod 3 = 0\}$ is regular ($\Sigma = \{a, b\}$)

Regular language

Example

Show that the language $L = \{a^n b^n \mid n \ge 0\}$ is regular
Regular Languages

Regular language

Example

- ✤ Show that the language $L = \{a^n b^n \mid n \ge 0\}$ is regular
- \clubsuit We need to construct a DFA M that L = L(M)

But this is impossible!

- L is not regular language
- We will learn how to prove it later in this course

• DFA vs NFA

DFA

A unique transition is defined for each state and each input symbol

NFA

• Multiple or none (λ -transition) transitions possible

- 1010, 101010 can be accepted
- 110, 10100 cannot be accepted
- For the case of 10
 - Both q0 and q2 are possible => Accepted

Definition of NFA

A NFA is defined by 5-tuples

$$M = (Q, \Sigma, \delta, q_0, F)$$

- \clubsuit Q is a finite set of **internal states**
- * Σ is a finite set of **symbols**
- * $\delta: Q \times (\Sigma \cup \{\lambda\}) \to 2^Q$ is the transition function
- ♣ q_0 is the initial state ($q_0 \in Q$)

$$M = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_0\})$$

$$\delta(q_0, 0) = \emptyset \qquad \delta(q_1, 0) = \{q_0, q_2\} \qquad \delta(q_2, 0) = \emptyset$$

$$\delta(q_0, 1) = \{q_1\} \qquad \delta(q_1, 1) = \{q_2\} \qquad \delta(q_2, 1) = \emptyset$$

$$\delta(q_0, \lambda) = \{q_0, q_2\} \qquad \delta(q_1, \lambda) = \{q_1\} \qquad \delta(q_2, \lambda) = \{q_2\}$$

Transition Table

q	0	1	λ	
$\rightarrow * q_0$	Ø	$\{q_1\}$	$\{q_0, q_2\}$	
q_1	$\{q_{0}, q_{2}\}$	$\{q_2\}$	$\{q_1\}$	
q_2	Ø	Ø	$\{q_{2}\}$	

Theory of Computation

• Why NFA is needed?

- In certain situations, NFAs can be utilized much more effectively than DFA
- E.g., FA for accepting strings containing a "I" in third position from the end
 DFA

• Why NFA is needed?

- In certain situations, NFAs can be utilized much more effectively than DFA
- E.g., FA for accepting strings containing a "I" in third position from the end
 NFA

• Why NFA is needed?

- In certain situations, NFAs can be utilized much more effectively than DFA
- E.g., FA for accepting strings containing a "I" in third position from the end
 NFA

Easy to solve a problem and describe a complicated language concisely!

• Acceptance of a language

- The language accepted by a NFA $M = (Q, \Sigma, \delta, q_0, F)$
 - => The set of all strings on Σ accepted by M

$$L(M) = \{ w \in \Sigma^* : \delta^*(q_0, w) \cap F \neq \emptyset \}$$

Language consists of all strings w

For which there is a walk labeled w from the initial state of the transition graph to some final states

• Example

Design an NFA for the language {w ∈ Σ* | w contains 011}, where Σ = {0, 1}
 ♦ 011,01100,101100,1001011100 => Accepted
 ♦ 1,11,101,11101,1110000001 => Rejected

• Example

Design an NFA for the language {w ∈ Σ* | w contains 011}, where Σ = {0, 1}
 ♦ 011,01100,101100,1001011100 => Accepted
 ♦ 1,11,101,11101,1110000001 => Rejected

• Practice

Design an NFA for the language {w ∈ Σ* | w ends with 00}, where Σ = {0, 1}, with three states
 ♦ 000, 100, 101100, 1001010100 => Accepted
 ♦ 1, 11, 101, 11101, 1110000001 => Rejected

• Every NFA has an equivalent DFA??

Equivalence

Two finite automata, MI and M2, are said to be equivalent if

$$L(M_1) = L(M_2)$$

(i.e., They both accept the same language)

• NFA $(N = (Q, \Sigma, \delta, q_0, F)) => DFA (M = (Q', \Sigma, \delta', q_0', F'))$

I. Create a transition table for N

• NFA $(N = (Q, \Sigma, \delta, q_0, F)) => DFA (M = (Q', \Sigma, \delta', q_0', F'))$

2. Create the DFA's start state

 \clubsuit Set of all possible starting states in the NFA

All states that can be reached from the q_0 by following λ -transition

• In this case, $\{q_0\}$ will be the starting state

Transition table for N

qab
$$\lambda$$
 $\rightarrow q_0$ $\{q_1, q_2\}$ Ø $\{q_0\}$ $* q_1$ $\{q_1, q_2\}$ $\{q_0\}$ $\{q_1, q_2\}$ q_2 Ø $\{q_0\}$ $\{q_2\}$

• NFA $(N = (Q, \Sigma, \delta, q_0, F)) => DFA (M = (Q', \Sigma, \delta', q_0', F'))$

3. Create the DFA's transition table

Until no new state generated

Transition table for N			Transition table for M				
q	а	b	λ		q	а	b
$\rightarrow q_0$	$\{q_1, q_2\}$	Ø	$\{q_0\}$		$\rightarrow \{q_0\}$	$\{q_1,q_2\}$	Ø
$* q_1$	$\{q_1, q_2\}$	$\{q_0\}$	$\{q_1, q_2\}$				
q_2	Ø	$\{q_0\}$	$\{q_2\}$				

Theory of Computation

• NFA $(N = (Q, \Sigma, \delta, q_0, F)) => DFA (M = (Q', \Sigma, \delta', q_0', F'))$

3. Create the DFA's transition table

Until no new state generated

Transition table for N

q	а	b	λ	
$\rightarrow q_0$	$\{q_1, q_2\}$	Ø	$\{q_{0}\}$	
* q ₁	$\{q_1, q_2\}$	$\{q_{0}\}$	$\{q_1, q_2\}$	
q_2	Ø	$\{q_{0}\}$	${q_2}$	

Transition table for Maab

$$\begin{array}{c|c|c|c|c|c|c|c|} \rightarrow \{q_0\} & \{q_1, q_2\} & \emptyset \\ \{q_1, q_2\} & \{q_1, q_2\} & \{q_0\} \end{array}$$

• NFA $(N = (Q, \Sigma, \delta, q_0, F)) => DFA (M = (Q', \Sigma, \delta', q_0', F'))$

3. Create the DFA's transition table

Until no new state generated

Transition table for N

q	а	b	λ	
$\rightarrow q_0$	$\{q_1, q_2\}$	Ø	$\{q_{0}\}$	
$* q_1$	$\{q_1, q_2\}$	$\{q_{0}\}$	$\{q_1, q_2\}$	
q_2	Ø	$\{q_{0}\}$	${q_2}$	

Transition table for M

• NFA $(N = (Q, \Sigma, \delta, q_0, F)) => DFA (M = (Q', \Sigma, \delta', q_0', F'))$

4. Determining the final state of the DFA

Sets of states that contain at least one final state from the NFA

Transition table for N			Transit	Transition table for M		
q	а	b	λ	q	а	b
$\rightarrow q_0$	$\{q_1, q_2\}$	Ø	$\{q_0\}$	$\rightarrow \{q_0\}$	$\{q_1, q_2\}$	Ø
$* q_1$	$\{q_1,q_2\}$	$\{q_{0}\}$	$\{q_1, q_2\}$	$* \{q_1, q_2\}$	$\{q_1, q_2\}$	$\{q_0\}$
q_2	Ø	$\{q_{0}\}$	$\{q_2\}$	Ø	Ø	Ø

Theory of Computation

• NFA
$$(N = (Q, \Sigma, \delta, q_0, F)) => DFA (M = (Q', \Sigma, \delta', q_0', F'))$$

Transition graph for M

Transition table for M

• NFA
$$(N = (Q, \Sigma, \delta, q_0, F)) => DFA (M = (Q', \Sigma, \delta', q_0', F'))$$

• Practice

• Converting NFA to DFA ($\Sigma = \{a, b\}$)

- Practice
 - Converting NFA to DFA

- One language can be accepted by many DFAs
 - One DFA => One language
 - One language => many DFAs

- One language can be accepted by many DFAs
 - One DFA => One language
 - One language => many DFAs

states reachable subsequent to $\delta(q_0, 0)$ = states reachable subsequent to $\delta(q_0, 1)$

- Indistinguishable states
 - Two states p and q of a DFA are called indistinguishable if

$$\delta^*(p, w) \in F$$
 implies $\delta^*(q, w) \in F$,

and

$\delta^*(p,w) \notin F$ implies $\delta^*(q,w) \notin F$

- Indistinguishable states
 - Two states p and q of a DFA are called indistinguishable if

$$\delta^*(p, w) \in F$$
 implies $\delta^*(q, w) \in F$,

and

$\delta^*(p,w) \notin F$ implies $\delta^*(q,w) \notin F$

- Reducing the number of DFA states
 - = finding indistinguishable pairs and merging them

• Finding and merging indistinguishable pairs

I. Remove all inaccessible states, where no path exists from the initial state

• Finding and merging indistinguishable pairs

- I. Remove all inaccessible states, where no path exists from the initial state
- 2. Construct a grid of pairs of states

• Finding and merging indistinguishable pairs

I. Remove all inaccessible states, where no path exists from the initial state

2

2. Construct a grid of pairs of states

For a pair
$$(p, q)$$
,
if $p \in F$ and $q \notin F$ (or vice versa),
 (p,q) is distinguishable

• Finding and merging indistinguishable pairs

- I. Remove all inaccessible states, where no path exists from the initial state
- 2. Construct a grid of pairs of states

For all pairs (p,q) and all $a \in \Sigma$, compute $\delta(p,a) = p_a$ and $\delta(q,a) = q_a$.

If the pair (p_a, q_a) is distinguishable, then (p, q) is distinguishable

• Finding and merging indistinguishable pairs

- I. Remove all inaccessible states, where no path exists from the initial state
- 2. Construct a grid of pairs of states

$$\{0, 1\} \text{ given } 0 \Longrightarrow \{1, 2\}$$

$$\{0, 1\} \text{ given } 1 \Longrightarrow \{2, 3\}$$

$$\{0, 2\} \text{ given } 0 \Longrightarrow \{1, 2\}$$

$$\{0, 2\} \text{ given } 0 \Longrightarrow \{2, 2\}$$

$$\{1, 2\} \text{ given } 0 \Longrightarrow \{2, 2\}$$

$$\{1, 2\} \text{ given } 1 \Longrightarrow \{3, 4\}$$

$$\{3, 4\} \text{ given } 0 \Longrightarrow \{3, 4\}$$

$$\{3, 4\} \text{ given } 1 \Longrightarrow \{3, 4\}$$

• Finding and merging indistinguishable pairs

- I. Remove all inaccessible states, where no path exists from the initial state
- 2. Construct a grid of pairs of states

$$\{0, 1\} \text{ given } 0 \Longrightarrow \{1, 2\}$$

$$\{0, 1\} \text{ given } 1 \Longrightarrow \{2, 3\}$$

$$\{0, 2\} \text{ given } 0 \Longrightarrow \{1, 2\}$$

$$\{0, 2\} \text{ given } 1 \Longrightarrow \{2, 4\}$$

$$\{1, 2\} \text{ given } 0 \Longrightarrow \{2, 2\}$$

$$\{1, 2\} \text{ given } 1 \Longrightarrow \{3, 4\}$$

$$\{3, 4\} \text{ given } 0 \Longrightarrow \{3, 4\}$$

$$\{3, 4\} \text{ given } 1 \Longrightarrow \{3, 4\}$$

• Finding and merging indistinguishable pairs

- I. Remove all inaccessible states, where no path exists from the initial state
- 2. Construct a grid of pairs of states

 (q_1, q_2) and (q_3, q_4) are indistinguishable!

- 3. Construct a new DFA
 - Indistinguishable states => a single state
 - \clubsuit We have three states
 - $\{q_0\}, \{q_1, q_2\}, \text{and } \{q_3, q_4\}$

• Finding and merging indistinguishable pairs

3. Construct a new DFA

 \bullet We have three states

• $\{q_0\}, \{q_1, q_2\}, \text{and } \{q_3, q_4\}$

• Finding and merging indistinguishable pairs

3. Construct a new DFA

 \bullet We have three states

• $\{q_0\}, \{q_1, q_2\}, \text{and } \{q_3, q_4\}$

$$\begin{split} \delta(q_0, 0) &= q_1 \\ \delta(q_0, 1) &= q_2 \\ \downarrow \\ \delta'(\{q_0\}, 0) \\ &= \delta'(\{q_0\}, 1) \\ &= \{q_1, q_2\} \end{split} \qquad \begin{aligned} \delta(q_1, 0) &= q_2 \\ \delta(q_2, 0) &= q_2 \\ \downarrow \\ \delta'(\{q_1, q_2\}, 0) \\ &= \{q_1, q_2\} \end{aligned}$$

• Finding and merging indistinguishable pairs

3. Construct a new DFA

 \bullet We have three states

• $\{q_0\}, \{q_1, q_2\}, \text{and } \{q_3, q_4\}$

- Finding and merging indistinguishable pairs
 - 3. Construct a new DFA

• Practice

Next Lecture

Regular Languages and Regular Grammars