Please check your attendance using Blackboard!

(Revisit) Reduction of the number of states

• Practice

Lecture 3 Regular Languages and Regular Grammars COSE215: Theory of Computation

Seunghoon Woo

Fall 2023

Contents

- Regular Languages
- Regular Expressions
- Regular Grammars

Regular Expressions and Regular Grammars

- It is difficult to understand natural languages in automata
- Formal language can be understandable!
 - A formal language is an artificial language that generalizes/abstracts the characteristics of language and formalizes it mathematically
 - E.g., Regular language, context-free language, ...
- A language is regular if there exists a finite automaton for it

Regular Expressions and Regular Grammars

- We need more concise ways of describing regular languages
 - I. Regular expressions
 - 2. Regular grammars

• A compact notation to describe finite-automaton patterns

Definition

- 1. \emptyset , λ , and $a \in \Sigma$ are all regular expressions
 - Called primitive regular expressions

• A compact notation to describe finite-automaton patterns

Definition

1. \emptyset , λ , and $a \in \Sigma$ are all regular expressions

Called primitive regular expressions

2. If r_1 and r_2 are regular expressions, so are $r_1 + r_2$, $r_1 \cdot r_2$, r_1^* , and (r_1)

• A compact notation to describe finite-automaton patterns

Definition

- 1. \emptyset , λ , and $a \in \Sigma$ are all regular expressions
 - Called primitive regular expressions
- 2. If r_1 and r_2 are regular expressions, so are $r_1 + r_2$, $r_1 \cdot r_2$, r_1^* , and (r_1)
- 3. A string is a regular expression if and only if it can be derived from the primitive regular expressions by a finite number of applications of the rule 2

• A compact notation to describe finite-automaton patterns

Definition

- 1. \emptyset , λ , and $a \in \Sigma$ are all regular expressions
 - Called primitive regular expressions
- 2. If r_1 and r_2 are regular expressions, so are $r_1 + r_2$, $r_1 \cdot r_2$, r_1^* , and (r_1)
- 3. A string is a regular expression if and only if it can be derived from the primitive regular expressions by a finite number of applications of the rule 2

• Example

• For $\Sigma = \{a, b, c\}$, the string $(a + b \cdot c)^* \cdot (c + \emptyset)$ is a regular expression

• Many important applications in computer science

- Security and data verification
- Language processing
- Text processing and search
- Data extraction and conversion

```
•
```


'Error 1122', 'Error 1023']

- A regular expression can describe a language
- Definition
 - The language L(r) denoted by any regular expression r is defined:
 - I. Ø is a regular expression denoting the **empty set**
 - 2. λ is a regular expression denoting $\{\lambda\}$ $(L(\lambda) = \{\lambda\})$
 - 3. For every $a \in \Sigma$, a is a regular expression denoting $\{a\}$ $(L(a) = \{a\})$

- A regular expression can describe a language
- Definition
 - The language L(r) denoted by any regular expression r is defined:
 - I. Ø is a regular expression denoting the **empty set**
 - 2. λ is a regular expression denoting $\{\lambda\}$ $(L(\lambda) = \{\lambda\})$
 - 3. For every $a \in \Sigma$, a is a regular expression denoting $\{a\}$ $(L(a) = \{a\})$

If r_1 and r_2 are regular expressions, then

- 4. $L(r_1 + r_2) = L(r_1) \cup L(r_2)$ UNION
- 5. $L(r_1 \cdot r_2) = L(r_1)L(r_2)$ CONCATENATION
- 6. $L((r_1)) = L(r_1)$
- 7. $L(r_1^*) = (L(r_1))^*$ STAR

(the last four rules are used to reduce L(r) to simpler components recursively)

• Example

- Exhibit the language $L(a^* \cdot (a + b))$ in set notation
 - $\bigstar \quad L(a^* \cdot (a+b))$
 - $= L(a^*)L(a+b)$
 - $= (L(a))^* L(a) \cup L(b)$
 - $=\{\lambda,a,aa,aaa,\dots\}\{a,b\}$
 - $= \{a, aa, aaa, \ldots, b, ab, aab, \ldots\}$

• Precedence and associativity rules

• E.g., $L(a \cdot b + c)$: which one is correct? $\bigstar L(a \cdot b) \cup L(c) = \{ab, c\}$ $\bigstar L(a) (L(b) \cup L(c)) = \{ab, ac\}$

Order of precedence

- Star > concatenation > union
- $01^* = 0(1^*)$

• Left associativity of union and concatenation

 $\bullet 0 \cdot 1 \cdot 0 = (0 \cdot 1) \cdot 0$

- Regular expression can denote a language
 - E.g., For $\Sigma = \{a, b\}$, the expression $r = (a + b)^*(a + bb)$ is regular and denotes

- Regular expression can denote a language
 - E.g., For $\Sigma = \{a, b\}$, the expression $r = (a + b)^*(a + bb)$ is regular and denotes

$$L(r) = \{a, bb, aa, abb, ba, bbb, \dots\}$$

All strings terminated by either an *a* **or a** *bb*

- Regular expression can denote a language
 - E.g., For $\Sigma = \{0, 1\}$, give a regular expression r such that

 $L(r) = \{w \in \Sigma^* : w \text{ has at least one pair of consecutive zeros}\}$

- Regular expression can denote a language
 - E.g., For $\Sigma = \{0, 1\}$, give a regular expression r such that

 $L(r) = \{w \in \Sigma^* : w \text{ has at least one pair of consecutive zeros}\}$

- Every string in L(r) must contain '00' somewhere
 - $r = (0+1)^* 00(0+1)^*$

• Practice

• E.g., For $\Sigma = \{0, 1\}$, give a regular expression r such that

 $L(r) = \{w \in \Sigma^* : w \text{ contains at least two 0's} \}$

 $L(r) = \{w \in \Sigma^* : w \text{ contains an even number of 0's} \}$

- If r is a regular expression, then L(r) is a regular language
 - A language is regular if it is accepted by a DFA
 - We can construct an NFA that accepts L(r) for any regular expression r
 - ✤ NFA => DFA (equivalence)

- If r is a regular expression, then L(r) is a regular language
 - I. Begin with automata that accept the languages for the simple REs

NFA accepts Ø

NFA accepts λ

NFA accepts $a \ (a \in \Sigma)$

- If r is a regular expression, then L(r) is a regular language
 - 2. Suppose automata $M(r_1)$ and $M(r_2)$ accept languages denoted by r_1 and r_2

- If r is a regular expression, then L(r) is a regular language
 - 3. Then we can construct automata for the REs $r_1 + r_2$, $r_1 \cdot r_2$, and r_1^*

- If r is a regular expression, then L(r) is a regular language
 - 3. Then we can construct automata for the REs $r_1 + r_2$, $r_1 \cdot r_2$, and r_1^* $r_1 \cdot r_2$

- If r is a regular expression, then L(r) is a regular language
 - 3. Then we can construct automata for the REs $r_1 + r_2$, $r_1 \cdot r_2$, and r_1^*

• Example

• Construct an NFA M that accepts L(r), where $r = (a + bb)^*(ba^* + \lambda)$

• Example

• Construct an NFA M that accepts L(r), where $r = (a + bb)^*(ba^* + \lambda)$ • M_1 for (a + bb)

• Example

• Construct an NFA M that accepts L(r), where $r = (a + bb)^*(ba^* + \lambda)$ $(a + bb)^*$

• Example

• Construct an NFA M that accepts L(r), where $r = (a + bb)^*(ba^* + \lambda)$

 $\bigstar M_2 \text{ for } (ba^* + \lambda)$

• Example

• Construct an NFA M that accepts L(r), where $r = (a + bb)^*(ba^* + \lambda)$ $(a + bb)^*(ba^* + \lambda)$

• Practice

• Construct an NFA M that accepts $(0 + 1)^*00$

Next Lecture

- DFA to regular expressions
- Regular grammars