Please check your attendance
using Blackboard!

Theory of Computation 1

(Revisit) Reduction of the number of states

* Practice
0| -
1|2
712 1 -
32 2 1 -
4 X X X X -
01 2 3 4 b\j
— () .
\/

Theory of Computation 2

Lecture 3

Regular Languages and

Regular Grammars
COSE215: Theory of Computation

Seunghoon Woo

Fall 2023

Theory of Computation

Contents

* Regular Languages
* Regular Expressions

* Regular Grammars

Theory of Computation 4

Regular Expressions and Regular Grammars

* It is difficult to understand natural languages in automata

* Formal language can be understandable!

* A formal language is an artificial language that generalizes/abstracts the

characteristics of language and formalizes it mathematically

" E.g., Regular language, context-free language, ...

* A language is regular if there exists a finite automaton for it

Theory of Computation 5

Regular Expressions and Regular Grammars

* We need more concise ways of describing regular languages

|. Regular expressions

2. Regular grammars

Theory of Computation 6

Regular Expressions

* A compact notation to describe finite-automaton patterns

 Definition

1. @,14,and a € X are all regular expressions

% Called primitive regular expressions

Theory of Computation 4

Regular Expressions

* A compact notation to describe finite-automaton patterns

 Definition

1. @,14,and a € X are all regular expressions

% Called primitive regular expressions

2. If r; and 1, are regular expressions,so are r; +1,, 111y, 17, and (17)

Theory of Computation 8

Regular Expressions

* A compact notation to describe finite-automaton patterns

 Definition

1. @,14,and a € X are all regular expressions

% Called primitive regular expressions
2. If r; and 1, are regular expressions,so are r; +1,, 111y, 17, and (17)

3. A string is a regular expression if and only if it can be derived from the primitive

regular expressions by a finite number of applications of the rule 2

Theory of Computation 9

Regular Expressions

* A compact notation to describe finite-automaton patterns

 Definition

1. @,14,and a € X are all regular expressions

% Called primitive regular expressions
2. If r; and 1, are regular expressions,so are r; +1,, 111y, 17, and (17)

3. A string is a regular expression if and only if it can be derived from the primitive

regular expressions by a finite number of applications of the rule 2

* Example

* For X ={a,b,c},thestring(a+ b -c)* - (c+ Q) is a regular expression

Theory of Computation 10

Regular Expressions

* Many important applications in computer science
" Security and data verification
" | anguage processing
* Text processing and search
= Data extraction and conversion

import re

text = "Error 1122: Reference Error\n Error 1023: Argument Error."
regex = re.compile("Error\s\d+")

res = regex.findall(text)

print (res)

['Error 1122', 'Error 1023']

Theory of Computation

Regular Expressions

* A regular expression can describe a language

 Definition

* The language L(r) denoted by any regular expression r is defined:

|. @ is aregular expression denoting the empty set
2. Ais aregular expression denoting {4} (L(1) = {1})

3. Foreverya € %, ais a regular expression denoting {a} (L(a) = {a})

Theory of Computation 12

Regular Expressions

* A regular expression can describe a language

 Definition

* The language L(r) denoted by any regular expression 7 is defined:
|. @ is aregular expression denoting the empty set
2. s a regular expression denoting {4} (L(1) = {1})
3. Foreverya €%, ais aregular expression denoting {a} (L(a) = {a})

If ; and , are regular expressions, then

4. L(ry+1) =L0) ULy ... UNION

5. L(ry:7r) =L()L(ry) . CONCATENATION
6. L((r)) =L(r)

7. L) =L))o STAR

(the last four rules are used to reduce L(r) to simpler components recursively)

Theory of Computation 13

Regular Expressions

* Example

= Exhibit the language L(a* - (a + b)) in set notation
% L(a*-(a+b))
= L(a")L(a+ b)
= (L(a)) L(a) U L(b)

={A,a,aa,aaaq, .. {a, b}
={a,aa,aaaq, ...,b,ab,aab, ...}

Theory of Computation 14

Regular Expressions

* Precedence and associativity rules

" Eg.,L(a- b+ c): which one is correct?
L(a-b)UL(c)={ab,c}
s L (a) (L(b) U L(c)) = {ab, ac}

* Order of precedence

= Star > concatenation > union
= 01" = 0(1%)

* Left associativity of union and concatenation
*0-1-0=(0-1)-0

Theory of Computation 15

Regular Expressions

* Regular expression can denote a language

» E.g,For £ = {a, b}, the expression r = (a + b)*(a + bb) is regular and denotes

Theory of Computation 16

Regular Expressions

* Regular expression can denote a language

» E.g,For £ = {a, b}, the expression r = (a + b)*(a + bb) is regular and denotes

L(r) = {a,bb,aa,abb, ba, bbb, ...}

¢ All strings terminated by either an a or a bb

Theory of Computation 17

Regular Expressions

* Regular expression can denote a language

= E.g,For ¥ ={0,1}, give a regular expression r such that

L(r) = {w € X*: w has at least one pair of consecutive zeros}

Theory of Computation 18

Regular Expressions

* Regular expression can denote a language

= E.g,For ¥ ={0,1}, give a regular expression r such that

L(r) = {w € X*: w has at least one pair of consecutive zeros}

¢ Every string in L(r) must contain ‘00’ somewhere

« r=(0+1)*00(0 + 1*

Theory of Computation 19

Regular Expressions

 Practice

= E.g,For ¥ ={0,1}, give a regular expression r such that

L(r) = {w € £*:w contains at least two 0’s}

L(r) = {w € Z*: w contains an even number of 0’s}

Theory of Computation 20

Regular Expressions and regular languages

* If r is a regular expression, then L(r) is a regular language

" A language is regular if it is accepted by a DFA

" We can construct an NFA that accepts L(7) for any regular expression r
¢ NFA => DFA (equivalence)

Theory of Computation 21

Regular Expressions and regular languages

* If r is a regular expression, then L(r) is a regular language

|. Begin with automata that accept the languages for the simple REs

‘ ‘

NFA accepts @ NFA accepts A NFA accepts a (a €)

Theory of Computation 22

Regular Expressions and regular languages

* If r is a regular expression, then L(r) is a regular language

2. Suppose automata M(r;) and M(r,) accept languages denoted by r; and 1,

Theory of Computation 23

Regular Expressions and regular languages

* If r is a regular expression, then L(r) is a regular language

3. Then we can construct automata for the REs r; + 1,77 - 15, and 1{

o1 tn

M(rq)

A/‘ ‘\A‘

Theory of Computation 24

Regular Expressions and regular languages

* If r is a regular expression, then L(r) is a regular language

3. Then we can construct automata for the REs r; + 1,77 - 15, and 1{

STy

>@’L

Theory of Computation

A
—

25

Regular Expressions and regular languages

* If r is a regular expression, then L(r) is a regular language

3. Then we can construct automata for the REs r; + 1,77 - 15, and 1{

oy

(D~ Ol
— L N P > __,

Theory of Computation 26

Regular Expressions and regular languages

* Example
= Construct an NFA M that accepts L(r), where r = (a + bb)*(ba* + 1)

Theory of Computation 27

Regular Expressions and regular languages

* Example

= Construct an NFA M that accepts L(r), where r = (a + bb)*(ba* + 1)
% M, for (a + bb)

Theory of Computation 28

Regular Expressions and regular languages

* Example

= Construct an NFA M that accepts L(r), where r = (a + bb)*(ba* + 1)
* (a+ bb)*
A

TN

Theory of Computation 29

Regular Expressions and regular languages

* Example

= Construct an NFA M that accepts L(r), where r = (a + bb)*(ba* + 1)
“* M, for (ba™ + 1)

a

=
~N_

A

Theory of Computation 30

Regular Expressions and regular languages

* Example

= Construct an NFA M that accepts L(r), where r = (a + bb)*(ba* + 1)
% L((a + bb)*(ba* + 1))

0N A

.OL.O",O_’%QL.QL.QLQ_%QL@
N

A

Theory of Computation 31

Regular Expressions and regular languages

 Practice

* Construct an NFA M that accepts (0 + 1)*00

Theory of Computation 32

Next Lecture

* DFA to regular expressions

* Regular grammars

Theory of Computation 33

