Please check your attendance using Blackboard!

(Revisit) Reduction of the number of states

• **Practice**

COSE215: Theory of Computation **Lecture 3 Regular Languages and Regular Grammars**

Seunghoon Woo

Fall 2023

Contents

- **Regular Languages**
- **Regular Expressions**
- **Regular Grammars**

Regular Expressions and Regular Grammars

- **It is difficult to understand natural languages in automata**
- **Formal language can be understandable!**
	- A formal language is an artificial language that generalizes/abstracts the characteristics of language and formalizes it mathematically
	- E.g., Regular language, context-free language, ...
- **A language is regular if there exists a finite automaton for it**

Regular Expressions and Regular Grammars

- **We need more concise ways of describing regular languages**
	- 1. Regular expressions
	- 2. Regular grammars

• **A compact notation to describe finite-automaton patterns**

• **Definition**

- 1. \emptyset , λ , and $\alpha \in \Sigma$ are all regular expressions
	- ❖ Called **primitive regular expressions**

• **A compact notation to describe finite-automaton patterns**

• **Definition**

- 1. \emptyset , λ , and $\alpha \in \Sigma$ are all regular expressions
	- ❖ Called **primitive regular expressions**
- 2. If r_1 and r_2 are regular expressions, so are $r_1 + r_2$, $r_1 \cdot r_2$, r_1^* , and (r_1)

• **A compact notation to describe finite-automaton patterns**

• **Definition**

- 1. \emptyset , λ , and $\alpha \in \Sigma$ are all regular expressions
	- ❖ Called **primitive regular expressions**
- 2. If r_1 and r_2 are regular expressions, so are $r_1 + r_2$, $r_1 \cdot r_2$, r_1^* , and (r_1)
- 3. A string is a regular expression if and only if it can be derived from the primitive regular expressions by a finite number of applications of the rule 2

• **A compact notation to describe finite-automaton patterns**

• **Definition**

- 1. \emptyset , λ , and $\alpha \in \Sigma$ are all regular expressions
	- ❖ Called **primitive regular expressions**
- 2. If r_1 and r_2 are regular expressions, so are $r_1 + r_2$, $r_1 \cdot r_2$, r_1^* , and (r_1)
- 3. A string is a regular expression if and only if it can be derived from the primitive regular expressions by a finite number of applications of the rule 2

• **Example**

• For $\Sigma = \{a, b, c\}$, the string $(a + b \cdot c)^* \cdot (c + \emptyset)$ is a regular expression

• **Many important applications in computer science**

- **E** Security and data verification
- **E** Language processing
- **EXT PROCESSING AND SEARCH**
- Data extraction and conversion

```
\blacksquare ...
```


'Error 1122', 'Error 1023']

- **A regular expression can describe a language**
- **Definition**
	- **The language** $L(r)$ denoted by any regular expression r is defined:
		- 1. ∅ is a regular expression denoting the **empty set**
		- 2. λ is a regular expression denoting $\{\lambda\}$ $(L(\lambda) = \{\lambda\})$
		- 3. For every $a \in \Sigma$, a is a regular expression denoting $\{a\}$ $(L(a) = \{a\})$

- **A regular expression can describe a language**
- **Definition**
	- **The language** $L(r)$ denoted by any regular expression r is defined:
		- 1. ∅ is a regular expression denoting the **empty set**
		- 2. λ is a regular expression denoting $\{\lambda\}$ $(L(\lambda) = \{\lambda\})$
		- 3. For every $a \in \Sigma$, a is a regular expression denoting $\{a\}$ $(L(a) = \{a\})$

If r_1 and r_2 are regular expressions, then

- 4. $L(r_1 + r_2) = L(r_1) \cup L(r_2)$ UNION
- 5. $L(r_1 \cdot r_2) = L(r_1)L(r_2)$ CONCATENATION
- 6. $L((r_1)) = L(r_1)$
- 7. $L(r_1^*) = (L(r_1$ ∗ STAR

(the last four rules are used to reduce $L(r)$ to simpler components recursively)

• **Example**

- Exhibit the language $L(a^* \cdot (a + b))$ in set notation
	- ❖ $L(a^* \cdot (a + b))$
		- $= L(a^*)L(a + b)$
		- $= (L(a$ ∗ $L(a) \cup L(b)$
		- $= {\lambda, a, aa, aaa, ...\}$ {a, b}
		- $= \{a, aa, aaa, ..., b, ab, aab, ...\}$

• **Precedence and associativity rules**

■ E.g., $L(a \cdot b + c)$: which one is correct? $\mathbf{\hat{L}}$ $(a \cdot b) \cup L(c) = \{ab, c\}$ \triangleleft L(a) (L(b) ∪ L(c)) = {ab, ac}

• **Order of precedence**

- Star > concatenation > union
- $01^* = 0(1^*$

• **Left associativity of union and concatenation**

 $\blacksquare 0 \cdot 1 \cdot 0 = (0 \cdot 1) \cdot 0$

- **Regular expression can denote a language**
	- **E.g., For** $\Sigma = \{a, b\}$, the expression $r = (a + b)^*(a + bb)$ is regular and denotes

- **Regular expression can denote a language**
	- **E.g., For** $\Sigma = \{a, b\}$, the expression $r = (a + b)^*(a + bb)$ is regular and denotes

$$
L(r) = \{a, bb, aa, abb, ba, bbb, \dots\}
$$

 \div All strings terminated by either an a or a bb

- **Regular expression can denote a language**
	- **E.g., For** $\Sigma = \{0, 1\}$, give a regular expression r such that

 $L(r) = \{ w \in \Sigma^* : w \text{ has at least one pair of consecutive zeros} \}$

- **Regular expression can denote a language**
	- **E.g., For** $\Sigma = \{0, 1\}$ **, give a regular expression r such that**

 $L(r) = \{ w \in \Sigma^* : w \text{ has at least one pair of consecutive zeros} \}$

- ❖ Every string in L(r) must contain '00' somewhere
	- $r = (0+1)^*00(0+1)^*$

• **Practice**

E.g., For $\Sigma = \{0, 1\}$, give a regular expression r such that

 $L(r) = \{ w \in \Sigma^* : w \text{ contains at least two 0's} \}$

 $L(r) = \{ w \in \Sigma^* : w \text{ contains an even number of 0's} \}$

- \cdot If r is a regular expression, then $L(r)$ is a regular language
	- A language is regular if it is accepted by a DFA
	- **We can construct an NFA that accepts** $L(r)$ **for any regular expression** r
		- ❖ NFA => DFA (equivalence)

- \cdot If r is a regular expression, then $L(r)$ is a regular language
	- 1. Begin with automata that accept the languages for the simple REs

NFA accepts \emptyset NFA accepts λ NFA accepts a ($a \in \Sigma$)

- \cdot If r is a regular expression, then $L(r)$ is a regular language
	- 2. Suppose automata $M(r_1)$ and $M(r_2)$ accept languages denoted by r_1 and r_2

- \cdot If r is a regular expression, then $L(r)$ is a regular language
	- 3. Then we can construct automata for the REs $r_1 + r_2$, $r_1 \cdot r_2$, and r_1^*

- \cdot If r is a regular expression, then $L(r)$ is a regular language
	- 3. Then we can construct automata for the REs $r_1 + r_2$, $r_1 \cdot r_2$, and r_1^* $\mathbf{\cdot}$ \mathbf{r}_1 ∙ \mathbf{r}_2

- \cdot If r is a regular expression, then $L(r)$ is a regular language
	- 3. Then we can construct automata for the REs $r_1 + r_2$, $r_1 \cdot r_2$, and r_1^*

• **Example**

■ Construct an NFA M that accepts $L(r)$, where $r = (a + bb)^*(ba^* + \lambda)$

• **Example**

■ Construct an NFA M that accepts $L(r)$, where $r = (a + bb)^*(ba^* + \lambda)$ $\clubsuit M_1$ for $(a + bb)$

• **Example**

■ Construct an NFA M that accepts $L(r)$, where $r = (a + bb)^*(ba^* + \lambda)$ $\mathbf{\hat{\cdot}\cdot }$ $(a + bb)^*$

• **Example**

■ Construct an NFA M that accepts $L(r)$, where $r = (a + bb)^*(ba^* + \lambda)$

 $\triangleleft M_2$ for $(ba^* + \lambda)$

• **Example**

■ Construct an NFA M that accepts $L(r)$, where $r = (a + bb)^*(ba^* + \lambda)$ $\mathbf{\hat{\cdot} \cdot} L((a + bb)^*(ba^* + \lambda))$

• **Practice**

■ Construct an NFA M that accepts $(0 + 1)^*00$

Next Lecture

- **DFA to regular expressions**
- **Regular grammars**