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Regular expression and finite automata

• How can we represent regular expressions in finite automata?

Theory of Computation 4

𝐿(𝑎∗ + 𝑎∗ 𝑎 + 𝑏 𝑐∗)



Regular expression and finite automata

• How can we represent regular expressions in finite automata?

Theory of Computation 5

𝐿(𝑎∗ + 𝑎∗ 𝑎 + 𝑏 𝑐∗)

S3
𝑎, 𝑏

𝑎 𝑐



Regular expression and finite automata

• How can we represent regular expressions in finite automata?

▪ One way: using generalized NFA, aka, Generalized Transition Graph (GTG)

❖ NFA with labels of “REs” instead of only members of Σ
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Regular expression and finite automata

• How can we represent regular expressions in finite automata?

▪ Split regular expression based on the rules

❖ UNION operation
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Regular expression and finite automata

• How can we represent regular expressions in finite automata?
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Regular expression and finite automata

• How can we represent regular expressions in finite automata?

▪ Split regular expression based on the rules

❖ STAR operation

• CASE 1) Only one outgoing edge at the left-most state
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Regular expression and finite automata

• How can we represent regular expressions in finite automata?

▪ Split regular expression based on the rules

❖ STAR operation

• CASE 3) Remaining cases
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Regular expression and finite automata

• How can we represent regular expressions in finite automata?

▪ Split regular expression based on the rules

❖ STAR operation

• CASE 3) Remaining cases: generating a new state
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Regular expression and finite automata

• How can we represent regular expressions in finite automata?

▪ Example: 𝑟 = 𝑎𝑏 + 𝑏𝑎 ∗
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Regular expression and finite automata
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▪ Example: 𝑟 = 𝑎𝑏 + 𝑏𝑎 ∗
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Regular expression and finite automata

• How can we represent regular expressions in finite automata?

▪ Example: 𝑟 = 𝑎𝑏 + 𝑏𝑎 ∗
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Regular expression and finite automata

• How can we represent regular expressions in finite automata?
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Regular expression and finite automata

• How can we represent regular expressions in finite automata?

▪ Example: 10 + 0 + 11 0∗1
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Regular expression and finite automata

• How can we represent regular expressions in finite automata?

▪ Example: 10 + 0 + 11 0∗1
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Regular expression and finite automata

• How can we represent regular expressions in finite automata?

▪ Example: 10 + 0 + 11 0∗1
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Regular expression and finite automata

• Practice

▪ Example: 𝑎 + 𝑏 ∗𝑎𝑏∗𝑎 𝑎 + 𝑏𝑎 ∗
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DFA to regular expressions

• How can we extract regular expressions from a DFA?

▪ Example
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DFA to regular expressions

• How can we extract regular expressions from a DFA?

▪ Example

❖ 𝑏∗𝑎 𝑎 + 𝑏 ∗
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DFA to regular expressions

• How can we extract regular expressions from a DFA?

▪ Basic idea
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DFA to regular expressions

• How can we extract regular expressions from a DFA?

▪ Basic idea
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DFA to regular expressions

• How can we extract regular expressions from a DFA?

▪ Arden’s theorem (rule)

❖ If 𝑃 and 𝑄 are Regular Expressions over 𝛴, 

• Then the following equation in 𝑅 given by 𝑅 = 𝑄 + 𝑅𝑃 has a unique solution 𝑅 = 𝑄𝑃∗
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DFA to regular expressions

• How can we extract regular expressions from a DFA?

▪ Arden’s theorem with multiple final states

❖ 𝑅 given by 𝑅 = 𝑄 + 𝑅𝑃 has a unique solution 𝑅 = 𝑄𝑃∗
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DFA to regular expressions

• How can we extract regular expressions from a DFA?

▪ Arden’s theorem with multiple final states
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DFA to regular expressions

• How can we extract regular expressions from a DFA?

▪ Arden’s theorem with multiple final states

❖ 𝑅 given by 𝑅 = 𝑄 + 𝑅𝑃 has a unique solution 𝑅 = 𝑄𝑃∗
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DFA to regular expressions

• How can we extract regular expressions from a DFA?

▪ Another example

❖ 𝑅 given by 𝑅 = 𝑄 + 𝑅𝑃 has a unique solution 𝑅 = 𝑄𝑃∗
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DFA to regular expressions

• Practice

▪ Arden’s theorem with multiple final states

❖ 𝑅 given by 𝑅 = 𝑄 + 𝑅𝑃 has a unique solution 𝑅 = 𝑄𝑃∗
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Regular grammars

• Regular languages can be described by using certain grammars

▪ First, introducing Right-Linear and Left-Linear grammars
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Regular grammars

• Regular languages can be described by using certain grammars

▪ First, introducing Right-Linear and Left-Linear grammars

❖A grammar G = (V, T, S, P) is said to be right-linear if all productions are of the form

• 𝐴 → 𝑥𝐵,

• 𝐴 → 𝑥,

where 𝐴, 𝐵 ∈ 𝑉 and 𝑥 ∈ 𝑇∗

❖A grammar G = (V, T, S, P) is said to be left-linear if all productions are of the form

• 𝐴 → 𝐵𝑥,

• 𝐴 → 𝑥

▪ A regular grammar is one that is either right-linear or left-linear
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Regular grammars

• Regular languages can be described by using certain grammars

▪ Right-Linear 

❖ E.g., The grammar 𝐺1 = 𝑆 , 𝑎, 𝑏 , 𝑆, 𝑃1 , with 𝑃1 given as 𝑆 → 𝑎𝑏𝑆 | 𝑎 is right-linear

▪ Left-Linear

❖ E.g., The grammar 𝐺2 = 𝑆 , 𝑎, 𝑏 , 𝑆, 𝑃2 , with 𝑃2 given as 𝑆 → 𝑆𝑎𝑏 | 𝑏 is left-linear

▪ Not a regular grammar

❖ E.g., The grammar 𝐺3 = 𝑆, 𝐴, 𝐵 , 𝑎, 𝑏 , 𝑆, 𝑃3 , with 𝑃3 given as 

• 𝑆 → 𝐴

• 𝐴 → 𝑎𝐵 | 𝜆

• 𝐵 → 𝐴𝑏

is not regular
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Regular grammars

• Regular grammars to finite automata

▪ Construct a finite automaton recognizing 𝐿(𝐺) where 𝐺 = 𝑆, 𝐴 , 𝑎, 𝑏 , 𝑆, 𝑃

with 𝑃 given as 

❖ 𝑆 → 𝑎𝑆 𝑏𝐴 𝑏

❖ 𝐴 → 𝑎𝐴 𝑏𝑆 𝑎
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Regular grammars

• Regular grammars to finite automata

▪ Construct a finite automaton recognizing 𝐿(𝐺) where 𝐺 = 𝑆, 𝐴 , 𝑎, 𝑏 , 𝑆, 𝑃

with 𝑃 given as 

❖ 𝑆 → 𝑎𝑆 𝑏𝐴 𝑏

❖ 𝐴 → 𝑎𝐴 𝑏𝑆 𝑎

1. Each production 𝐴𝑖 → 𝑎𝐴𝑗 induces a transition from 𝑞𝑖 to 𝑞𝑗 with label 𝑎

2. Each production 𝐴𝑘 → 𝑎 induces a transition from 𝑞𝑘 to 𝑞𝑓 (final) with label 𝑎
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Regular grammars
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Regular grammars

• Practice

▪ Construct a finite automaton recognizing 𝐿(𝐺) where 𝐺 = 𝑆, 𝐴 , 𝑎, 𝑏 , 𝑆, 𝑃

with 𝑃 given as 

❖ 𝑆 → 𝑎𝑆 𝑏𝑆 𝑎𝐴

❖ 𝐴 → 𝑏𝐵

❖ 𝐵 → 𝑎𝐶

❖ 𝐶 → 𝑎
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Regular grammars

• DFA to regular grammar

▪ Construct a regular grammar from given DFA
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Regular grammars

• DFA to regular grammar

▪ Construct a regular grammar from given DFA

❖ 𝐴𝑖 → 𝑎𝐴𝑗 constructed if (𝑞𝑖, 𝑎) = 𝑞𝑗 where 𝑞𝑗 ∉ 𝐹

❖ 𝐴𝑖 → 𝑎𝐴𝑗 and 𝐴𝑖 → 𝑎 constructed if (𝑞𝑖 , 𝑎) = 𝑞𝑗 where 𝑞𝑗 ∈ 𝐹
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Regular grammars

• DFA to regular grammar

▪ Construct a regular grammar from given DFA

❖ 𝐺 = (𝑉, 𝑇, 𝑃, 𝑆)

• 𝑉 = 𝑆, 𝐴

• 𝑇 = 𝑎, 𝑏

• 𝑃

• 𝑆 → 𝑎𝑆 𝑏𝐴 𝑏

• 𝐴 → 𝑎𝐴 𝑏𝐴 𝑎 | 𝑏

Theory of Computation 55



Description of regular language
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Next Lecture

• Properties of Regular Languages
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