
Please check your attendance 
using Blackboard!

1Theory of Computation



COSE215: Theory of Computation

Seunghoon Woo

Fall 2023

2Theory of Computation

Lecture 3

Regular Languages and 
Regular Grammars



Contents

• Regular expressions to finite automata

• DFA to regular expressions

• Regular Grammars

Theory of Computation 3



Regular expression and finite automata

• How can we represent regular expressions in finite automata?

Theory of Computation 4

𝐿(𝑎∗ + 𝑎∗ 𝑎 + 𝑏 𝑐∗)



Regular expression and finite automata

• How can we represent regular expressions in finite automata?

Theory of Computation 5

𝐿(𝑎∗ + 𝑎∗ 𝑎 + 𝑏 𝑐∗)

S3
𝑎, 𝑏

𝑎 𝑐



Regular expression and finite automata

• How can we represent regular expressions in finite automata?

▪ One way: using generalized NFA, aka, Generalized Transition Graph (GTG)

❖ NFA with labels of “REs” instead of only members of Σ

Theory of Computation 6

𝑎 + 𝑏 𝑎𝑏∗



Regular expression and finite automata

• How can we represent regular expressions in finite automata?

▪ Split regular expression based on the rules

❖ UNION operation

Theory of Computation 7

𝑎 + 𝑏



Regular expression and finite automata

• How can we represent regular expressions in finite automata?

▪ Split regular expression based on the rules

❖ UNION operation

Theory of Computation 8

𝑎

𝑏



Regular expression and finite automata

• How can we represent regular expressions in finite automata?

▪ Split regular expression based on the rules

❖ CONCATENATION operation

Theory of Computation 9

𝑎𝑏



Regular expression and finite automata

• How can we represent regular expressions in finite automata?

▪ Split regular expression based on the rules

❖ CONCATENATION operation

Theory of Computation 10

𝑎 𝑏



Regular expression and finite automata

• How can we represent regular expressions in finite automata?

▪ Split regular expression based on the rules

❖ STAR operation

• CASE 1) Only one outgoing edge at the left-most state

Theory of Computation 11

𝑎∗



Regular expression and finite automata

• How can we represent regular expressions in finite automata?

▪ Split regular expression based on the rules

❖ STAR operation

• CASE 1) Only one outgoing edge at the left-most state

Theory of Computation 12

𝜆

𝑎



Regular expression and finite automata

• How can we represent regular expressions in finite automata?

▪ Split regular expression based on the rules

❖ STAR operation

• CASE 2) Only one incoming edge at the right-most state

Theory of Computation 13

𝑎∗



Regular expression and finite automata

• How can we represent regular expressions in finite automata?

▪ Split regular expression based on the rules

❖ STAR operation

• CASE 2) Only one incoming edge at the right-most state

Theory of Computation 14

𝜆

𝑎



Regular expression and finite automata

• How can we represent regular expressions in finite automata?

▪ Split regular expression based on the rules

❖ STAR operation

• CASE 3) Remaining cases

Theory of Computation 15

𝑎∗



Regular expression and finite automata

• How can we represent regular expressions in finite automata?

▪ Split regular expression based on the rules

❖ STAR operation

• CASE 3) Remaining cases: generating a new state

Theory of Computation 16

𝑎

𝜆 𝜆



Regular expression and finite automata

• How can we represent regular expressions in finite automata?

▪ Example: 𝑟 = 𝑎𝑏 + 𝑏𝑎 ∗

Theory of Computation 17

S3

(𝑎𝑏 + 𝑏𝑎)



Regular expression and finite automata

• How can we represent regular expressions in finite automata?

▪ Example: 𝑟 = 𝑎𝑏 + 𝑏𝑎 ∗

Theory of Computation 18

S3

𝑏𝑎

𝑎𝑏



Regular expression and finite automata

• How can we represent regular expressions in finite automata?

▪ Example: 𝑟 = 𝑎𝑏 + 𝑏𝑎 ∗

Theory of Computation 19

S3

𝑎

𝑏𝑎

𝑏



Regular expression and finite automata

• How can we represent regular expressions in finite automata?

▪ Example: 𝑟 = 𝑎𝑏 + 𝑏𝑎 ∗

Theory of Computation 20

S3

𝑎

𝑏

𝑏 𝑎



Regular expression and finite automata

• How can we represent regular expressions in finite automata?

▪ Example: 10 + 0 + 11 0∗1

Theory of Computation 21



Regular expression and finite automata

• How can we represent regular expressions in finite automata?

▪ Example: 10 + 0 + 11 0∗1

Theory of Computation 22

10 + 0 + 11 0∗1



Regular expression and finite automata

• How can we represent regular expressions in finite automata?

▪ Example: 10 + 0 + 11 0∗1

Theory of Computation 23

10

0 + 11 0∗1



Regular expression and finite automata

• How can we represent regular expressions in finite automata?

▪ Example: 10 + 0 + 11 0∗1

Theory of Computation 24

1

0 + 11

0

0∗1



Regular expression and finite automata

• How can we represent regular expressions in finite automata?

▪ Example: 10 + 0 + 11 0∗1

Theory of Computation 25

1

0 + 11

0

1

0



Regular expression and finite automata

• How can we represent regular expressions in finite automata?

▪ Example: 10 + 0 + 11 0∗1

Theory of Computation 26

1

0

0

1

0

1

1



Regular expression and finite automata

• Practice

▪ Example: 𝑎 + 𝑏 ∗𝑎𝑏∗𝑎 𝑎 + 𝑏𝑎 ∗

Theory of Computation 27



DFA to regular expressions

• How can we extract regular expressions from a DFA?

▪ Example

Theory of Computation 28

S3
a

b a, b

𝐴 𝐵



DFA to regular expressions

• How can we extract regular expressions from a DFA?

▪ Example

❖ 𝑏∗𝑎 𝑎 + 𝑏 ∗

Theory of Computation 29

S3
a

b a, b

𝐴 𝐵



DFA to regular expressions

• How can we extract regular expressions from a DFA?

▪ Basic idea

Theory of Computation 30

𝑟1



DFA to regular expressions

• How can we extract regular expressions from a DFA?

▪ Basic idea

Theory of Computation 31

𝑟1 𝑟2

𝑟1



DFA to regular expressions

• How can we extract regular expressions from a DFA?

▪ Basic idea

Theory of Computation 32

𝑟1 𝑟2

𝑟1

𝑟3

𝑟2

𝑟6

𝑟5

𝑟1

𝑟4



DFA to regular expressions

• How can we extract regular expressions from a DFA?

▪ Arden’s theorem (rule)

❖ If 𝑃 and 𝑄 are Regular Expressions over 𝛴, 

• Then the following equation in 𝑅 given by 𝑅 = 𝑄 + 𝑅𝑃 has a unique solution 𝑅 = 𝑄𝑃∗

Theory of Computation 33



DFA to regular expressions

• How can we extract regular expressions from a DFA?

▪ Arden’s theorem (rule)

❖ If 𝑃 and 𝑄 are Regular Expressions over 𝛴, 

• Then the following equation in 𝑅 given by 𝑅 = 𝑄 + 𝑅𝑃 has a unique solution 𝑅 = 𝑄𝑃∗

Theory of Computation 34



DFA to regular expressions

• How can we extract regular expressions from a DFA?

▪ Arden’s theorem (rule)

❖ If 𝑃 and 𝑄 are Regular Expressions over 𝛴, 

• Then the following equation in 𝑅 given by 𝑅 = 𝑄 + 𝑅𝑃 has a unique solution 𝑅 = 𝑄𝑃∗

Theory of Computation 35

𝐴 = 𝐴𝑏 + 𝜆
𝐵 = 𝐴𝑎 + 𝐵𝑎 + 𝐵𝑏

※ Considering incoming edges



DFA to regular expressions

• How can we extract regular expressions from a DFA?

▪ Arden’s theorem (rule)

❖ If 𝑃 and 𝑄 are Regular Expressions over 𝛴, 

• Then the following equation in 𝑅 given by 𝑅 = 𝑄 + 𝑅𝑃 has a unique solution 𝑅 = 𝑄𝑃∗

Theory of Computation 36

𝐴 = 𝐴𝑏 + 𝜆 => 𝐴 = 𝜆 ∙ 𝑏∗ = 𝑏∗

𝐵 = 𝐴𝑎 + 𝐵𝑎 + 𝐵𝑏



DFA to regular expressions

• How can we extract regular expressions from a DFA?

▪ Arden’s theorem (rule)

❖ If 𝑃 and 𝑄 are Regular Expressions over 𝛴, 

• Then the following equation in 𝑅 given by 𝑅 = 𝑄 + 𝑅𝑃 has a unique solution 𝑅 = 𝑄𝑃∗

Theory of Computation 37

𝐴 = 𝐴𝑏 + 𝜆 => 𝐴 = 𝜆 ∙ 𝑏∗ = 𝑏∗

𝐵 = 𝐴𝑎 + 𝐵𝑎 + 𝐵𝑏 => 𝐵 = 𝑏∗𝑎 + 𝐵𝑎 + 𝐵𝑏
= 𝒃∗𝒂 𝒂 + 𝒃 ∗



DFA to regular expressions

• How can we extract regular expressions from a DFA?

▪ Arden’s theorem with multiple final states

❖ 𝑅 given by 𝑅 = 𝑄 + 𝑅𝑃 has a unique solution 𝑅 = 𝑄𝑃∗

Theory of Computation 38



DFA to regular expressions

• How can we extract regular expressions from a DFA?

▪ Arden’s theorem with multiple final states

❖ 𝑅 given by 𝑅 = 𝑄 + 𝑅𝑃 has a unique solution 𝑅 = 𝑄𝑃∗

Theory of Computation 39

𝐴 = 𝐴0 + 𝜆
𝐵 = 𝐴1 + 𝐵1
𝐶 = 𝐵0 + 𝐶0 + 𝐶1



DFA to regular expressions

• How can we extract regular expressions from a DFA?

▪ Arden’s theorem with multiple final states

❖ 𝑅 given by 𝑅 = 𝑄 + 𝑅𝑃 has a unique solution 𝑅 = 𝑄𝑃∗

Theory of Computation 40

𝐴 = 𝐴0 + 𝜆
𝐵 = 𝐴1 + 𝐵1
𝐶 = 𝐵0 + 𝐶0 + 𝐶1

𝐴 = 0∗



DFA to regular expressions

• How can we extract regular expressions from a DFA?

▪ Arden’s theorem with multiple final states

❖ 𝑅 given by 𝑅 = 𝑄 + 𝑅𝑃 has a unique solution 𝑅 = 𝑄𝑃∗

Theory of Computation 41

𝐴 = 𝐴0 + 𝜆
𝐵 = 𝐴1 + 𝐵1
𝐶 = 𝐵0 + 𝐶0 + 𝐶1

𝐴 = 0∗

𝐵 = 𝐵1 + 0∗1 = 0∗11∗ (0∗1+)



DFA to regular expressions

• How can we extract regular expressions from a DFA?

▪ Arden’s theorem with multiple final states

❖ 𝑅 given by 𝑅 = 𝑄 + 𝑅𝑃 has a unique solution 𝑅 = 𝑄𝑃∗

Theory of Computation 42

𝐴 = 𝐴0 + 𝜆
𝐵 = 𝐴1 + 𝐵1
𝐶 = 𝐵0 + 𝐶0 + 𝐶1

𝐴 = 0∗

𝐵 = 𝐵1 + 0∗1 = 0∗11∗ (0∗1+)
𝐶 ⇒ 𝑇𝑟𝑎𝑝 𝑠𝑡𝑎𝑡𝑒!



DFA to regular expressions

• How can we extract regular expressions from a DFA?

▪ Arden’s theorem with multiple final states

❖ 𝑅 given by 𝑅 = 𝑄 + 𝑅𝑃 has a unique solution 𝑅 = 𝑄𝑃∗

Theory of Computation 43

𝐴 = 𝐴0 + 𝜆
𝐵 = 𝐴1 + 𝐵1
𝐶 = 𝐵0 + 𝐶0 + 𝐶1

𝐴 = 0∗

𝐵 = 𝐵1 + 0∗1 = 0∗11∗ (0∗1+)
𝑨 + 𝑩 = 𝟎∗ + 𝟎∗𝟏𝟏∗



DFA to regular expressions

• How can we extract regular expressions from a DFA?

▪ Another example

❖ 𝑅 given by 𝑅 = 𝑄 + 𝑅𝑃 has a unique solution 𝑅 = 𝑄𝑃∗

Theory of Computation 44

b

a b

𝐴 𝐵

b

aa

𝐶



DFA to regular expressions

• Practice

▪ Arden’s theorem with multiple final states

❖ 𝑅 given by 𝑅 = 𝑄 + 𝑅𝑃 has a unique solution 𝑅 = 𝑄𝑃∗

Theory of Computation 45



Regular grammars

• Regular languages can be described by using certain grammars

▪ First, introducing Right-Linear and Left-Linear grammars

Theory of Computation 46



Regular grammars

• Regular languages can be described by using certain grammars

▪ First, introducing Right-Linear and Left-Linear grammars

❖A grammar G = (V, T, S, P) is said to be right-linear if all productions are of the form

• 𝐴 → 𝑥𝐵,

• 𝐴 → 𝑥,

where 𝐴, 𝐵 ∈ 𝑉 and 𝑥 ∈ 𝑇∗

❖A grammar G = (V, T, S, P) is said to be left-linear if all productions are of the form

• 𝐴 → 𝐵𝑥,

• 𝐴 → 𝑥

▪ A regular grammar is one that is either right-linear or left-linear

Theory of Computation 47



Regular grammars

• Regular languages can be described by using certain grammars

▪ Right-Linear 

❖ E.g., The grammar 𝐺1 = 𝑆 , 𝑎, 𝑏 , 𝑆, 𝑃1 , with 𝑃1 given as 𝑆 → 𝑎𝑏𝑆 | 𝑎 is right-linear

▪ Left-Linear

❖ E.g., The grammar 𝐺2 = 𝑆 , 𝑎, 𝑏 , 𝑆, 𝑃2 , with 𝑃2 given as 𝑆 → 𝑆𝑎𝑏 | 𝑏 is left-linear

▪ Not a regular grammar

❖ E.g., The grammar 𝐺3 = 𝑆, 𝐴, 𝐵 , 𝑎, 𝑏 , 𝑆, 𝑃3 , with 𝑃3 given as 

• 𝑆 → 𝐴

• 𝐴 → 𝑎𝐵 | 𝜆

• 𝐵 → 𝐴𝑏

is not regular

Theory of Computation 48



Regular grammars

• Regular grammars to finite automata

▪ Construct a finite automaton recognizing 𝐿(𝐺) where 𝐺 = 𝑆, 𝐴 , 𝑎, 𝑏 , 𝑆, 𝑃

with 𝑃 given as 

❖ 𝑆 → 𝑎𝑆 𝑏𝐴 𝑏

❖ 𝐴 → 𝑎𝐴 𝑏𝑆 𝑎

Theory of Computation 49



Regular grammars

• Regular grammars to finite automata

▪ Construct a finite automaton recognizing 𝐿(𝐺) where 𝐺 = 𝑆, 𝐴 , 𝑎, 𝑏 , 𝑆, 𝑃

with 𝑃 given as 

❖ 𝑆 → 𝑎𝑆 𝑏𝐴 𝑏

❖ 𝐴 → 𝑎𝐴 𝑏𝑆 𝑎

1. Each production 𝐴𝑖 → 𝑎𝐴𝑗 induces a transition from 𝑞𝑖 to 𝑞𝑗 with label 𝑎

2. Each production 𝐴𝑘 → 𝑎 induces a transition from 𝑞𝑘 to 𝑞𝑓 (final) with label 𝑎

Theory of Computation 50



Regular grammars

• Regular grammars to finite automata

▪ Construct a finite automaton recognizing 𝐿(𝐺) where 𝐺 = 𝑆, 𝐴 , 𝑎, 𝑏 , 𝑆, 𝑃

with 𝑃 given as 

❖ 𝑆 → 𝑎𝑆 𝑏𝐴 𝑏

❖ 𝐴 → 𝑎𝐴 𝑏𝑆 𝑎

Theory of Computation 51



Regular grammars

• Practice

▪ Construct a finite automaton recognizing 𝐿(𝐺) where 𝐺 = 𝑆, 𝐴 , 𝑎, 𝑏 , 𝑆, 𝑃

with 𝑃 given as 

❖ 𝑆 → 𝑎𝑆 𝑏𝑆 𝑎𝐴

❖ 𝐴 → 𝑏𝐵

❖ 𝐵 → 𝑎𝐶

❖ 𝐶 → 𝑎

Theory of Computation 52



Regular grammars

• DFA to regular grammar

▪ Construct a regular grammar from given DFA

Theory of Computation 53



Regular grammars

• DFA to regular grammar

▪ Construct a regular grammar from given DFA

❖ 𝐴𝑖 → 𝑎𝐴𝑗 constructed if (𝑞𝑖, 𝑎) = 𝑞𝑗 where 𝑞𝑗 ∉ 𝐹

❖ 𝐴𝑖 → 𝑎𝐴𝑗 and 𝐴𝑖 → 𝑎 constructed if (𝑞𝑖 , 𝑎) = 𝑞𝑗 where 𝑞𝑗 ∈ 𝐹

Theory of Computation 54



Regular grammars

• DFA to regular grammar

▪ Construct a regular grammar from given DFA

❖ 𝐺 = (𝑉, 𝑇, 𝑃, 𝑆)

• 𝑉 = 𝑆, 𝐴

• 𝑇 = 𝑎, 𝑏

• 𝑃

• 𝑆 → 𝑎𝑆 𝑏𝐴 𝑏

• 𝐴 → 𝑎𝐴 𝑏𝐴 𝑎 | 𝑏

Theory of Computation 55



Description of regular language

Theory of Computation 56

Regular expressions

DFA or NFA

Regular grammar



Next Lecture

• Properties of Regular Languages

Theory of Computation 57


