Please check your attendance using Blackboard!

COSE215: Theory of Computation **Lecture 3 Regular Languages and Regular Grammars**

Seunghoon Woo

Fall 2023

Contents

- **Regular expressions to finite automata**
- **DFA to regular expressions**
- **Regular Grammars**

• **How can we represent regular expressions in finite automata?**

 $L(a^* + a^*(a + b)c^*)$

• **How can we represent regular expressions in finite automata?**

 $L(a^* + a^*(a + b)c^*)$

- One way: using generalized NFA, aka, Generalized Transition Graph (GTG)
	- \div NFA with labels of "REs" instead of only members of Σ

$$
\longrightarrow \left(\bigcup \frac{(a+b)ab^*}{ } \right)
$$

- **How can we represent regular expressions in finite automata?**
	- **E** Split regular expression based on the rules
		- ❖ UNION operation

- **How can we represent regular expressions in finite automata?**
	- **E** Split regular expression based on the rules
		- ❖ UNION operation

• **How can we represent regular expressions in finite automata?**

E Split regular expression based on the rules

❖ CONCATENATION operation

• **How can we represent regular expressions in finite automata?**

E Split regular expression based on the rules

❖ CONCATENATION operation

- **E** Split regular expression based on the rules
	- ❖ STAR operation
		- CASE 1) Only one outgoing edge at the left-most state

- **E** Split regular expression based on the rules
	- ❖ STAR operation
		- CASE 1) Only one outgoing edge at the left-most state

- **E** Split regular expression based on the rules
	- ❖ STAR operation
		- CASE 2) Only one incoming edge at the right-most state

- **E** Split regular expression based on the rules
	- ❖ STAR operation
		- CASE 2) Only one incoming edge at the right-most state

- **E** Split regular expression based on the rules
	- ❖ STAR operation
		- CASE 3) Remaining cases

- **E** Split regular expression based on the rules
	- ❖ STAR operation
		- CASE 3) Remaining cases: generating a new state

- **How can we represent regular expressions in finite automata?**
	- **Example:** $r = (ab + ba)^*$

- **How can we represent regular expressions in finite automata?**
	- **Example:** $r = (ab + ba)^*$

- **How can we represent regular expressions in finite automata?**
	- **Example:** $r = (ab + ba)^*$

- **How can we represent regular expressions in finite automata?**
	- **Example:** $r = (ab + ba)^*$

- **How can we represent regular expressions in finite automata?**
	- Example: $10 + (0 + 11)0^*1$

- **How can we represent regular expressions in finite automata?**
	- Example: $10 + (0 + 11)0^*1$

$$
\longrightarrow \bigcirc \xrightarrow{10 + (0 + 11)0^*1} \bigcirc
$$

- **How can we represent regular expressions in finite automata?**
	- Example: $10 + (0 + 11)0^*1$

- **How can we represent regular expressions in finite automata?**
	- Example: $10 + (0 + 11)0^*1$

- **How can we represent regular expressions in finite automata?**
	- Example: $10 + (0 + 11)0^*1$

- **How can we represent regular expressions in finite automata?**
	- Example: $10 + (0 + 11)0^*1$

• **Practice**

■ Example: $(a + b)^* ab^* a (a + ba)^*$

- **How can we extract regular expressions from a DFA?**
	- Example

- **How can we extract regular expressions from a DFA?**
	- Example

 $\mathbf{\dot{\cdot}} b^* a (a + b)^*$

- **How can we extract regular expressions from a DFA?**
	- **Basic idea**

- **How can we extract regular expressions from a DFA?**
	- **Basic idea**

• **How can we extract regular expressions from a DFA?**

• **How can we extract regular expressions from a DFA?**

- **E** Arden's theorem (rule)
	- ❖ If P and Q are Regular Expressions over Σ ,
		- Then the following equation in R given by $R = Q + RP$ has a unique solution $R = QP^*$

• **How can we extract regular expressions from a DFA?**

E Arden's theorem (rule)

❖ If P and Q are Regular Expressions over Σ ,

• Then the following equation in R given by $R = Q + RP$ has a unique solution $R = QP^*$

• **How can we extract regular expressions from a DFA?**

E Arden's theorem (rule)

❖ If P and Q are Regular Expressions over Σ ,

• Then the following equation in R given by $R = Q + RP$ has a unique solution $R = QP^*$

$$
A = Ab + \lambda
$$

$$
B = Aa + Ba + Bb
$$

• **How can we extract regular expressions from a DFA?**

E Arden's theorem (rule)

❖ If P and Q are Regular Expressions over Σ ,

• Then the following equation in R given by $R = Q + RP$ has a unique solution $R = QP^*$

 $A = Ab + \lambda$ => $A = \lambda \cdot b^* = b^*$ $B = Aa + Ba + Bb$

• **How can we extract regular expressions from a DFA?**

E Arden's theorem (rule)

❖ If P and Q are Regular Expressions over Σ ,

• Then the following equation in R given by $R = Q + RP$ has a unique solution $R = QP^*$

$$
A = Ab + \lambda \qquad \Rightarrow A = \lambda \cdot b^* = b^*
$$

$$
B = Aa + Ba + Bb \qquad \Rightarrow B = b^*a + Ba + Bb
$$

$$
= b^*a(a + b)^*
$$

• **How can we extract regular expressions from a DFA?**

Example 1 Arden's theorem with multiple final states

❖ R given by $R = Q + RP$ has a unique solution $R = QP^*$

• **How can we extract regular expressions from a DFA?**

Example 1 Arden's theorem with multiple final states

❖ R given by $R = Q + RP$ has a unique solution $R = QP^*$

 $A = A0 + \lambda$ $B = A1 + B1$ $C = B0 + C0 + C1$

• **How can we extract regular expressions from a DFA?**

Example 1 Arden's theorem with multiple final states

❖ R given by $R = Q + RP$ has a unique solution $R = QP^*$

• **How can we extract regular expressions from a DFA?**

Example 1 Arden's theorem with multiple final states

❖ R given by $R = Q + RP$ has a unique solution $R = QP^*$

 $A = A0 + \lambda$ $B = A1 + B1$ $B = B1 + 0^*1 = 0^*11^* (0^*1^+)$ $C = B0 + C0 + C1$ $A = 0^*$

• **How can we extract regular expressions from a DFA?**

Example 1 Arden's theorem with multiple final states

❖ R given by $R = Q + RP$ has a unique solution $R = QP^*$

 $A = A0 + \lambda$ $B = A1 + B1$ $B = B1 + 0^*1 = 0^*11^* (0^*1^+)$ $C = B0 + C0 + C1$ $C \Rightarrow Trap$ state! $A = 0^*$

• **How can we extract regular expressions from a DFA?**

Example 1 Arden's theorem with multiple final states

❖ R given by $R = Q + RP$ has a unique solution $R = QP^*$

 $A = A0 + \lambda$ $B = A1 + B1$ $B = B1 + 0^*1 = 0^*11^* (0^*1^+)$ $C = B0 + C0 + C1$ $A + B = 0^* + 0^*11^*$ $A = 0^*$

• **How can we extract regular expressions from a DFA?**

E Another example

❖ R given by $R = Q + RP$ has a unique solution $R = QP^*$

• **Practice**

- **Example 1** Arden's theorem with multiple final states
	- ❖ R given by $R = Q + RP$ has a unique solution $R = QP^*$

• **Regular languages can be described by using certain grammars**

■ First, introducing Right-Linear and Left-Linear grammars

Languages & grammars

\cdot Grammar (G)

- A set of rules used to define the structure of the strings in a language
- \blacksquare G = (V, T, S, P)
	- ❖ V: Set of variables (non-empty)
	- \cdot T: Set of terminal symbols (non-empty; V and T are disjoint)
	- ❖ S: Start variable $(S \in V)$
	- ❖ P: Set of productions

• **Regular languages can be described by using certain grammars**

- **First, introducing Right-Linear and Left-Linear grammars**
	- ❖ A grammar G = (V, T, S, P) is said to be **right-linear** if all productions are of the form
		- $A \rightarrow xB$.
		- $A \rightarrow x$,
		- where $A, B \in V$ and $x \in T^*$

❖ A grammar G = (V, T, S, P) is said to be **left-linear** if all productions are of the form

- $A \rightarrow Bx$.
- $A \rightarrow x$
- A regular grammar is one that is either right-linear or left-linear

- **Regular languages can be described by using certain grammars**
	- Right-Linear

❖ E.g., The grammar $G_1 = (\{S\}, \{a, b\}, S, P_1)$, with P_1 given as $S \rightarrow abS \mid a$ is right-linear

E Left-Linear

❖ E.g., The grammar $G_2 = (\{S\}, \{a, b\}, S, P_2)$, with P_2 given as $S \rightarrow Sab \mid b$ is left-linear

■ Not a regular grammar

❖ E.g., The grammar $G_3 = ({S, A, B}, {a, b}, S, P_3)$, with P_3 given as

- $S \rightarrow A$
- $A \rightarrow aB \mid \lambda$
- $B \rightarrow Ab$

• **Regular grammars to finite automata**

- Construct a finite automaton recognizing $L(G)$ where $G = (\{S, A\}, \{a, b\}, S, P)$ with P given as
	- $\mathcal{S} \rightarrow aS \mid bA \mid b$
	- \triangleleft A \rightarrow aA | bS | a

• **Regular grammars to finite automata**

- Construct a finite automaton recognizing $L(G)$ where $G = (\{S, A\}, \{a, b\}, S, P)$ with P given as
	- $\mathcal{S} \rightarrow aS \mid bA \mid b$
	- \triangleleft A → aA | bS | a
- 1. Each production $A_i \rightarrow aA_j$ induces a transition from q_i to q_j with label a
- 2. Each production $A_k \to a$ induces a transition from q_k to q_f (final) with label a

• **Regular grammars to finite automata**

■ Construct a finite automaton recognizing $L(G)$ where $G = (\{S, A\}, \{a, b\}, S, P)$ with P given as

• **Practice**

- Construct a finite automaton recognizing $L(G)$ where $G = (\{S, A\}, \{a, b\}, S, P)$ with P given as
	- $\mathcal{S} \rightarrow aS \mid bS \mid aA$
	- $\rightarrow AB$
	- \rightarrow $B \rightarrow aC$
	- $\mathcal{L} \rightarrow a$

• **DFA to regular grammar**

EXP Construct a regular grammar from given DFA

• **DFA to regular grammar**

EXP Construct a regular grammar from given DFA

 $\triangleleft A_i \rightarrow aA_j$ constructed if $(q_i, a) = q_j$ where $q_j \notin F$

 \bullet A_i → aA_j and A_i → a constructed if $(q_i, a) = q_j$ where $q_j \in F$

• **DFA to regular grammar**

- **EXP** Construct a regular grammar from given DFA
	- \triangleleft $G = (V, T, P, S)$
		- $V = \{S, A\}$
		- $T = \{a, b\}$
		- \bullet P
			- $S \rightarrow aS \mid bA \mid b$
			- $A \rightarrow aA \mid bA \mid a \mid b$

Description of regular language

Next Lecture

• **Properties of Regular Languages**