Please check your attendance using Blackboard!

Lecture 3 Regular Languages and Regular Grammars COSE215: Theory of Computation

Seunghoon Woo

Fall 2023

Contents

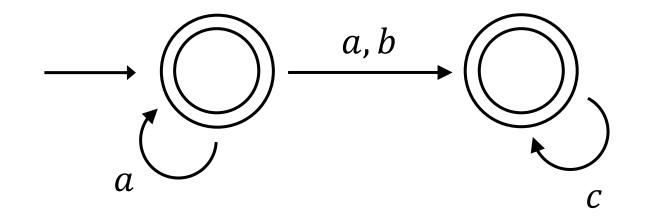
- Regular expressions to finite automata
- DFA to regular expressions
- Regular Grammars

• How can we represent regular expressions in finite automata?

 $L(a^* + a^*(a+b)c^*)$

• How can we represent regular expressions in finite automata?

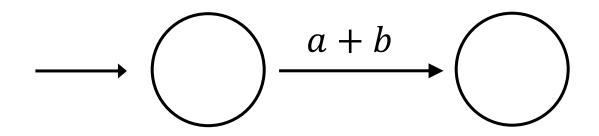
 $L(a^* + a^*(a+b)c^*)$



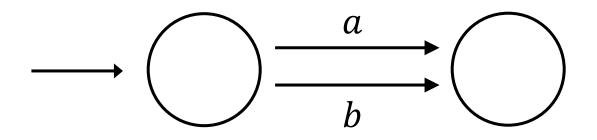
- One way: using generalized NFA, aka, Generalized Transition Graph (GTG)
 - \clubsuit NFA with labels of "REs" instead of only members of Σ

$$\longrightarrow \bigcirc \underbrace{(a+b)ab^*}$$

- How can we represent regular expressions in finite automata?
 - Split regular expression based on the rules
 - UNION operation



- How can we represent regular expressions in finite automata?
 - Split regular expression based on the rules
 - UNION operation

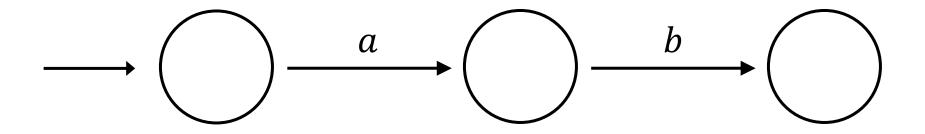


- How can we represent regular expressions in finite automata?
 - Split regular expression based on the rules

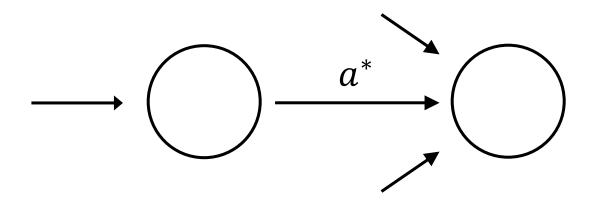
CONCATENATION operation



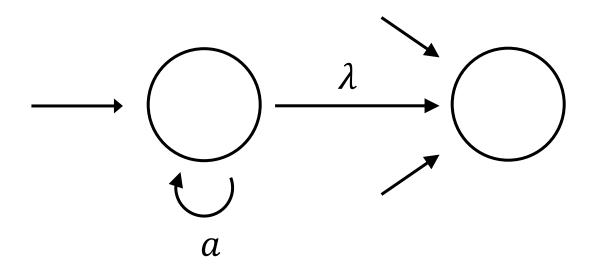
- How can we represent regular expressions in finite automata?
 - Split regular expression based on the rules
 - CONCATENATION operation



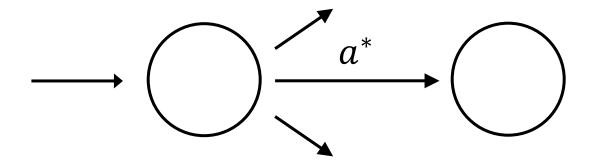
- Split regular expression based on the rules
 - ✤ STAR operation
 - CASE I) Only one outgoing edge at the left-most state



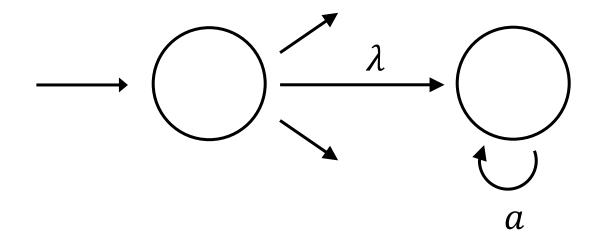
- Split regular expression based on the rules
 - ✤ STAR operation
 - CASE I) Only one outgoing edge at the left-most state



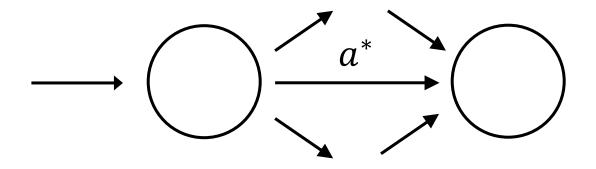
- Split regular expression based on the rules
 - ✤ STAR operation
 - CASE 2) Only one incoming edge at the right-most state



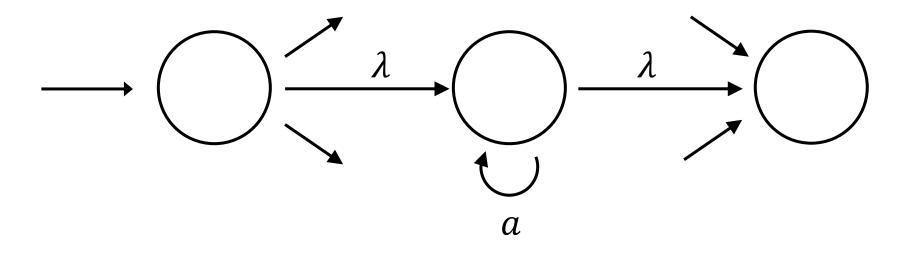
- Split regular expression based on the rules
 - ✤ STAR operation
 - CASE 2) Only one incoming edge at the right-most state



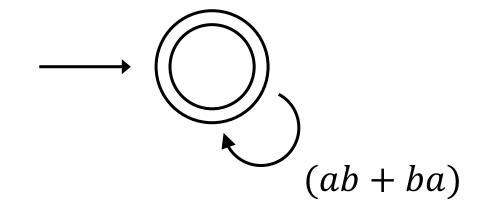
- Split regular expression based on the rules
 - ✤ STAR operation
 - CASE 3) Remaining cases



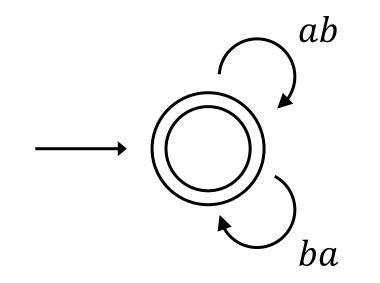
- Split regular expression based on the rules
 - ✤ STAR operation
 - CASE 3) Remaining cases: generating a new state



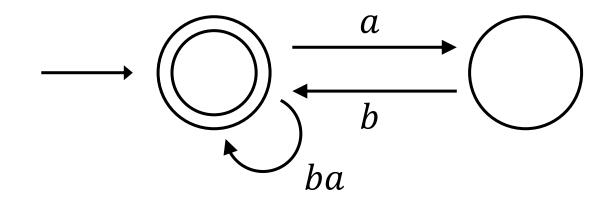
- How can we represent regular expressions in finite automata?
 - Example: $r = (ab + ba)^*$



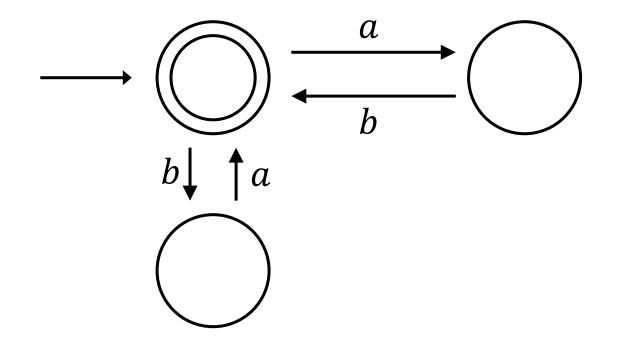
- How can we represent regular expressions in finite automata?
 - Example: $r = (ab + ba)^*$



- How can we represent regular expressions in finite automata?
 - Example: $r = (ab + ba)^*$



- How can we represent regular expressions in finite automata?
 - Example: $r = (ab + ba)^*$

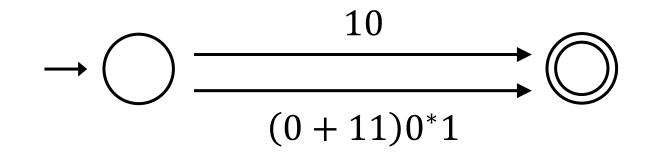


- How can we represent regular expressions in finite automata?
 - Example: $10 + (0 + 11)0^*1$

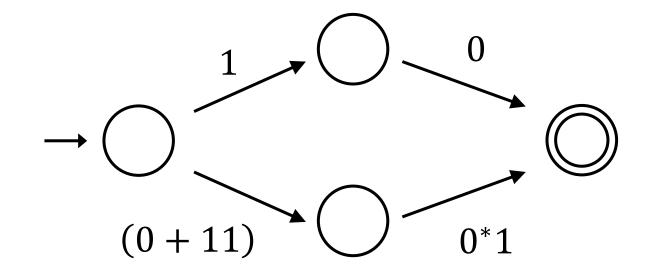
- How can we represent regular expressions in finite automata?
 - Example: $10 + (0 + 11)0^*1$

$$\rightarrow \bigcirc \xrightarrow{10 + (0 + 11)0^*1} \bigcirc$$

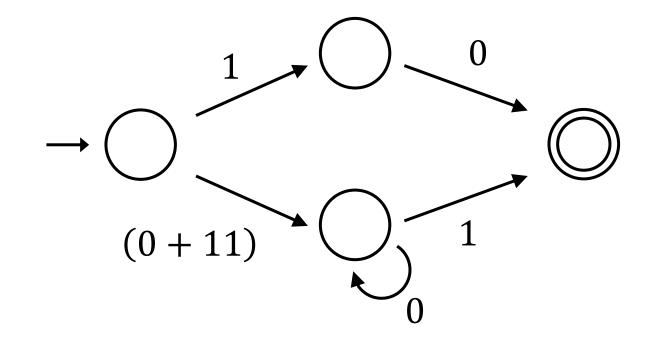
- How can we represent regular expressions in finite automata?
 - Example: $10 + (0 + 11)0^*1$



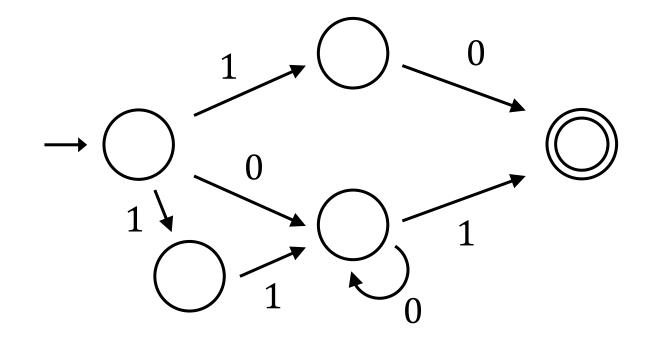
- How can we represent regular expressions in finite automata?
 - Example: $10 + (0 + 11)0^*1$



- How can we represent regular expressions in finite automata?
 - Example: $10 + (0 + 11)0^*1$



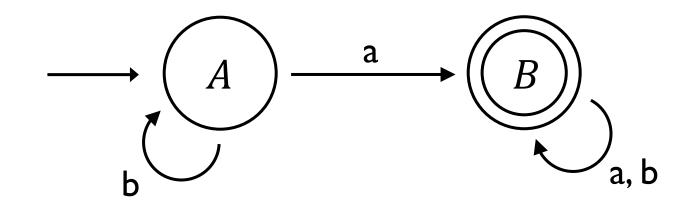
- How can we represent regular expressions in finite automata?
 - Example: $10 + (0 + 11)0^*1$



• Practice

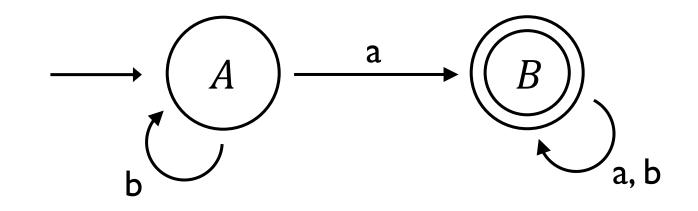
• Example: $(a + b)^*ab^*a(a + ba)^*$

- How can we extract regular expressions from a DFA?
 - Example

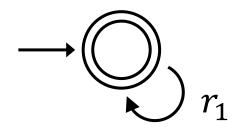


- How can we extract regular expressions from a DFA?
 - Example

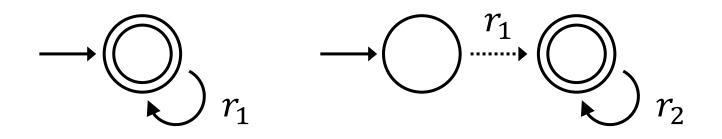
 $b^*a(a+b)^*$



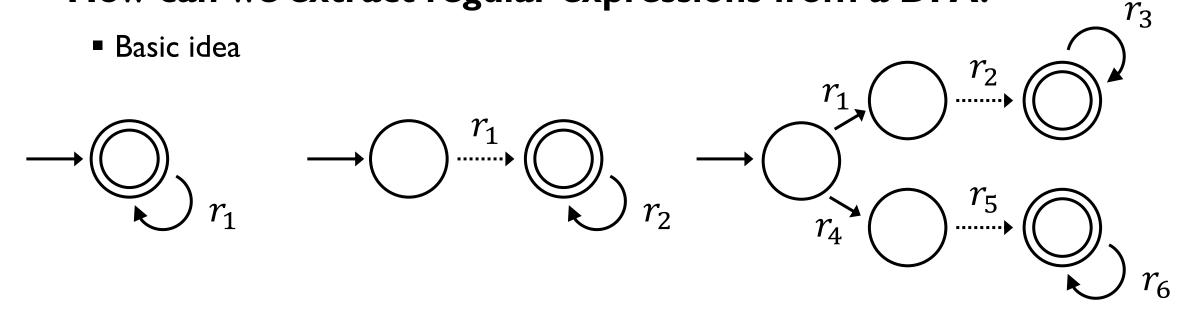
- How can we extract regular expressions from a DFA?
 - Basic idea



- How can we extract regular expressions from a DFA?
 - Basic idea



• How can we extract regular expressions from a DFA?



• How can we extract regular expressions from a DFA?

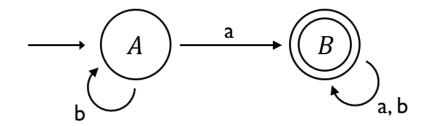
- Arden's theorem (rule)
 - \clubsuit If *P* and *Q* are Regular Expressions over Σ ,
 - Then the following equation in R given by R = Q + RP has a unique solution $R = QP^*$

• How can we extract regular expressions from a DFA?

Arden's theorem (rule)

 \clubsuit If *P* and *Q* are Regular Expressions over Σ ,

• Then the following equation in R given by R = Q + RP has a unique solution $R = QP^*$

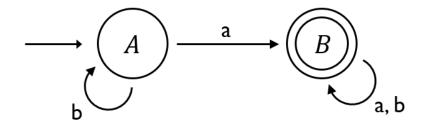


• How can we extract regular expressions from a DFA?

Arden's theorem (rule)

 \clubsuit If *P* and *Q* are Regular Expressions over Σ ,

• Then the following equation in R given by R = Q + RP has a unique solution $R = QP^*$



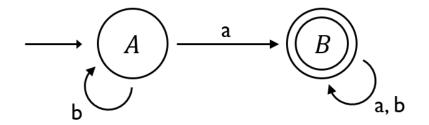
$$A = Ab + \lambda$$
$$B = Aa + Ba + Bb$$

• How can we extract regular expressions from a DFA?

Arden's theorem (rule)

 \clubsuit If *P* and *Q* are Regular Expressions over Σ ,

• Then the following equation in R given by R = Q + RP has a unique solution $R = QP^*$



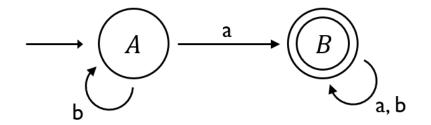
 $A = Ab + \lambda \qquad => A = \lambda \cdot b^* = b^*$ B = Aa + Ba + Bb

• How can we extract regular expressions from a DFA?

Arden's theorem (rule)

 \clubsuit If *P* and *Q* are Regular Expressions over Σ ,

• Then the following equation in R given by R = Q + RP has a unique solution $R = QP^*$

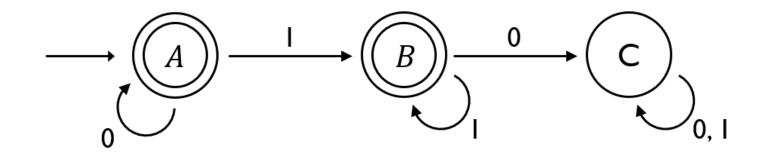


$$A = Ab + \lambda \qquad => A = \lambda \cdot b^* = b^*$$
$$B = Aa + Ba + Bb \qquad => B = b^*a + Ba + Bb$$
$$= b^*a(a + b)^*$$

• How can we extract regular expressions from a DFA?

Arden's theorem with multiple final states

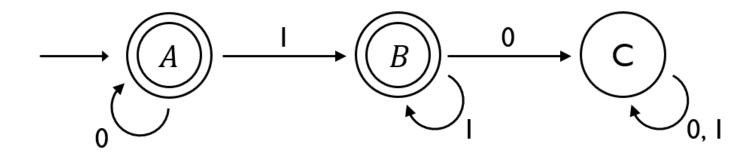
♦ *R* given by R = Q + RP has a unique solution $R = QP^*$



• How can we extract regular expressions from a DFA?

Arden's theorem with multiple final states

✤ R given by R = Q + RP has a unique solution $R = QP^*$

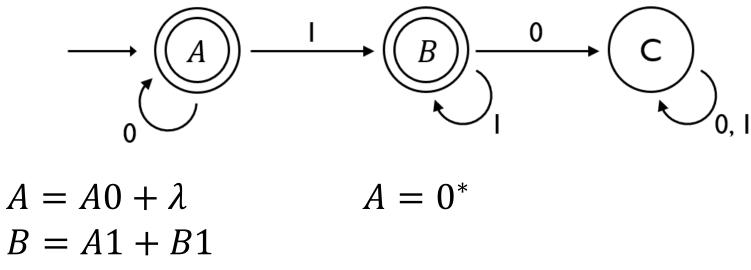


 $A = A0 + \lambda$ B = A1 + B1C = B0 + C0 + C1

• How can we extract regular expressions from a DFA?

Arden's theorem with multiple final states

✤ R given by R = Q + RP has a unique solution $R = QP^*$

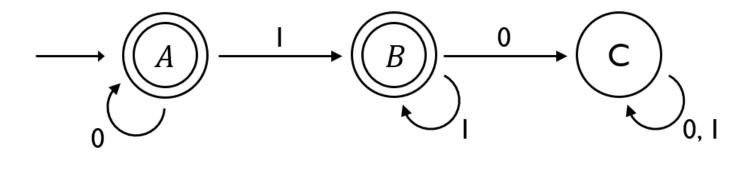


C = B0 + C0 + C1

• How can we extract regular expressions from a DFA?

Arden's theorem with multiple final states

✤ R given by R = Q + RP has a unique solution $R = QP^*$

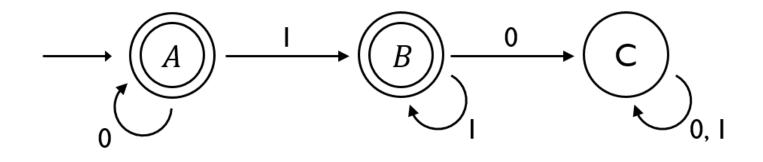


 $A = A0 + \lambda$ B = A1 + B1 C = B0 + C0 + C1 $A = 0^{*}$ $B = B1 + 0^{*}1 = 0^{*}11^{*} (0^{*}1^{+})$

• How can we extract regular expressions from a DFA?

Arden's theorem with multiple final states

✤ R given by R = Q + RP has a unique solution $R = QP^*$

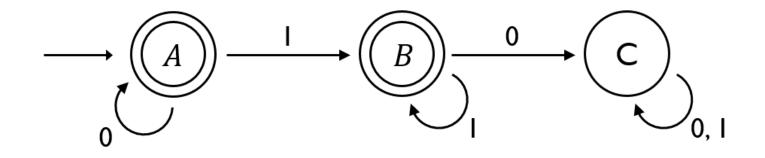


 $A = A0 + \lambda$ B = A1 + B1 C = B0 + C0 + C1 $A = 0^{*}$ $B = B1 + 0^{*}1 = 0^{*}11^{*} (0^{*}1^{+})$ $C \Rightarrow Trap state!$

• How can we extract regular expressions from a DFA?

Arden's theorem with multiple final states

✤ R given by R = Q + RP has a unique solution $R = QP^*$

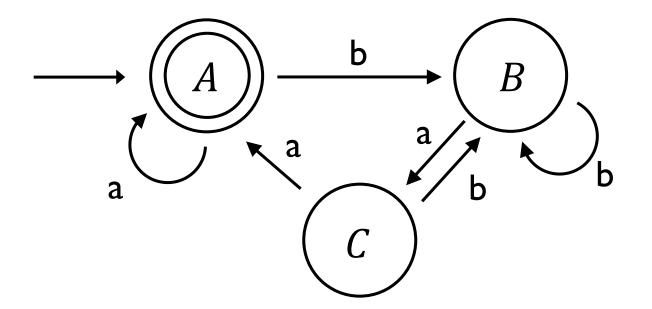


 $A = A0 + \lambda \qquad A = 0^*$ $B = A1 + B1 \qquad B = B1 + 0^*1 = 0^*11^* (0^*1^+)$ $C = B0 + C0 + C1 \qquad A + B = 0^* + 0^*11^*$

• How can we extract regular expressions from a DFA?

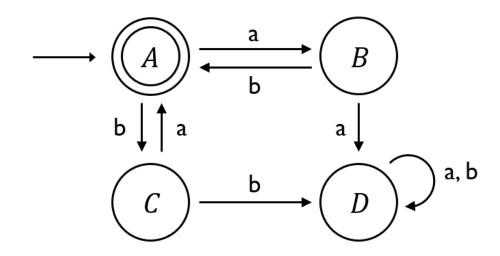
Another example

♦ *R* given by R = Q + RP has a unique solution $R = QP^*$



• Practice

- Arden's theorem with multiple final states
 - ✤ R given by R = Q + RP has a unique solution $R = QP^*$



• Regular languages can be described by using certain grammars

First, introducing Right-Linear and Left-Linear grammars

Languages & grammars

• Grammar (G)

- A set of rules used to define the structure of the strings in a language
- G = (V, T, S, P)
 - V: Set of variables (non-empty)
 - T: Set of terminal symbols (non-empty; V and T are disjoint)
 - ♦ S: Start variable ($S \in V$)
 - P: Set of productions

• Regular languages can be described by using certain grammars

- First, introducing Right-Linear and Left-Linear grammars
 - A grammar G = (V,T, S, P) is said to be **right-linear** if all productions are of the form
 - $A \rightarrow xB$,
 - $A \rightarrow x$,

where $A, B \in V$ and $x \in T^*$

A grammar G = (V,T,S,P) is said to be **left-linear** if all productions are of the form

- $A \rightarrow Bx$,
- $A \to x$
- A regular grammar is one that is either right-linear or left-linear

- Regular languages can be described by using certain grammars
 - Right-Linear

♦ E.g., The grammar $G_1 = ({S}, {a, b}, S, P_1)$, with P_1 given as $S \rightarrow abS \mid a$ is right-linear

Left-Linear

★ E.g., The grammar $G_2 = (\{S\}, \{a, b\}, S, P_2)$, with P_2 given as $S \rightarrow Sab \mid b$ is left-linear

Not a regular grammar

***** E.g., The grammar $G_3 = (\{S, A, B\}, \{a, b\}, S, P_3)$, with P_3 given as

- $S \to A$
- $A \rightarrow aB \mid \lambda$
- $B \rightarrow Ab$

• Regular grammars to finite automata

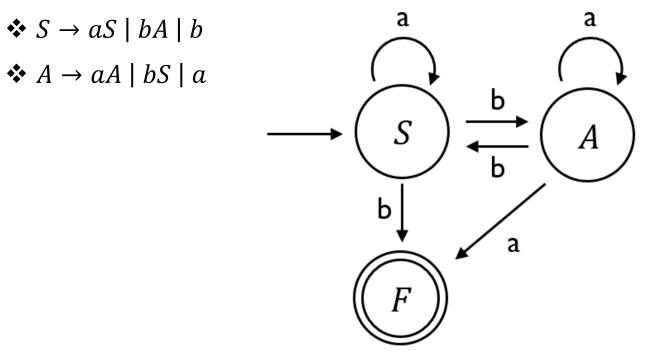
- Construct a finite automaton recognizing L(G) where $G = (\{S, A\}, \{a, b\}, S, P)$ with P given as
 - $\clubsuit S \to aS \mid bA \mid b$
 - $A \rightarrow aA \mid bS \mid a$

• Regular grammars to finite automata

- Construct a finite automaton recognizing L(G) where $G = (\{S, A\}, \{a, b\}, S, P)$ with P given as
 - $\clubsuit S \to aS \mid bA \mid b$
 - $A \to aA \mid bS \mid a$
- I. Each production $A_i \rightarrow aA_j$ induces a transition from q_i to q_j with label a
- 2. Each production $A_k \rightarrow a$ induces a transition from q_k to q_f (final) with label a

Regular grammars to finite automata

• Construct a finite automaton recognizing L(G) where $G = (\{S, A\}, \{a, b\}, S, P)$ with P given as

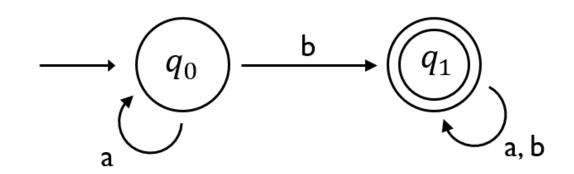


• Practice

- Construct a finite automaton recognizing L(G) where $G = (\{S, A\}, \{a, b\}, S, P)$ with P given as
 - $\clubsuit S \to aS \mid bS \mid aA$
 - $\clubsuit A \to bB$
 - $\clubsuit B \to aC$
 - $\clubsuit \ C \to a$

• DFA to regular grammar

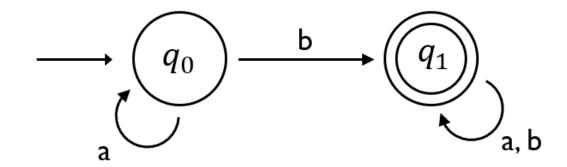
Construct a regular grammar from given DFA



• DFA to regular grammar

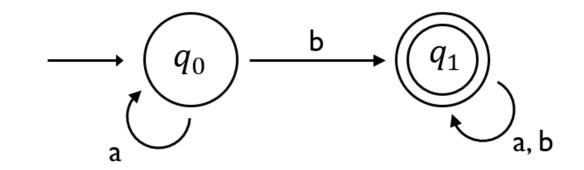
Construct a regular grammar from given DFA

 $A_i \rightarrow aA_j$ and $A_i \rightarrow a$ constructed if $(q_i, a) = q_j$ where $q_j \in F$

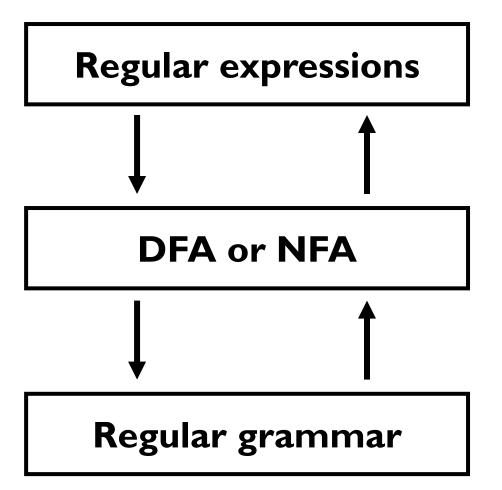


• DFA to regular grammar

- Construct a regular grammar from given DFA
 - $\bigstar G = (V, T, P, S)$
 - $V = \{S, A\}$
 - $T = \{a, b\}$
 - *P*
 - $S \rightarrow aS \mid bA \mid b$
 - $A \rightarrow aA \mid bA \mid a \mid b$



Description of regular language



Next Lecture

• Properties of Regular Languages