Please check your attendance
using Blackboard!

Theory of Computation 1

Lecture 3

Regular Languages and

Regular Grammars
COSE215: Theory of Computation

Seunghoon Woo

Fall 2023

Theory of Computation

Contents

* Regular expressions to finite automata
* DFA to regular expressions

* Regular Grammars

Theory of Computation 3

Regular expression and finite automata

* How can we represent regular expressions in finite automata?

L(a*+a*(a+ b)c*)

Theory of Computation 4

Regular expression and finite automata

* How can we represent regular expressions in finite automata?

L(a*+a*(a+ b)c*)

Theory of Computation 5

Regular expression and finite automata

* How can we represent regular expressions in finite automata?

" One way: using generalized NFA, aka, Generalized Transition Graph (GTG)

“* NFA with labels of “REs” instead of only members of X

(a+ b)ab*
>

Theory of Computation 6

Regular expression and finite automata

* How can we represent regular expressions in finite automata?

= Split regular expression based on the rules
“* UNION operation

-0

Theory of Computation 4

Regular expression and finite automata

* How can we represent regular expressions in finite automata?

= Split regular expression based on the rules
“* UNION operation

—O=—=0

Theory of Computation 8

Regular expression and finite automata

* How can we represent regular expressions in finite automata?

= Split regular expression based on the rules
“* CONCATENATION operation

—O—=0

Theory of Computation 9

Regular expression and finite automata

* How can we represent regular expressions in finite automata?

= Split regular expression based on the rules
“* CONCATENATION operation

—O—0——C

Theory of Computation 10

Regular expression and finite automata

* How can we represent regular expressions in finite automata?

= Split regular expression based on the rules

“* STAR operation

* CASE [) Only one outgoing edge at the left-most state

X

a

W
e

Theory of Computation 11

Regular expression and finite automata

* How can we represent regular expressions in finite automata?

= Split regular expression based on the rules

“* STAR operation

* CASE [) Only one outgoing edge at the left-most state

Theory of Computation 12

Regular expression and finite automata

* How can we represent regular expressions in finite automata?

= Split regular expression based on the rules

“* STAR operation

* CASE 2) Only one incoming edge at the right-most state

Theory of Computation 13

Regular expression and finite automata

* How can we represent regular expressions in finite automata?

= Split regular expression based on the rules

“* STAR operation

* CASE 2) Only one incoming edge at the right-most state

Theory of Computation 14

Regular expression and finite automata

* How can we represent regular expressions in finite automata?

= Split regular expression based on the rules

“* STAR operation
» CASE 3) Remaining cases

O7=0
~N

Theory of Computation 15

Regular expression and finite automata

* How can we represent regular expressions in finite automata?

= Split regular expression based on the rules

“* STAR operation

* CASE 3) Remaining cases: generating a new state

Theory of Computation 16

Regular expression and finite automata

* How can we represent regular expressions in finite automata?

» Example:r = (ab + ba)”

~O

(ab + ba)

Theory of Computation 17

Regular expression and finite automata

* How can we represent regular expressions in finite automata?

» Example:r = (ab + ba)”

Theory of Computation 18

Regular expression and finite automata

* How can we represent regular expressions in finite automata?

» Example:r = (ab + ba)”

Theory of Computation 19

Regular expression and finite automata

* How can we represent regular expressions in finite automata?

» Example:r = (ab + ba)”

Theory of Computation 20

Regular expression and finite automata

* How can we represent regular expressions in finite automata?
» Example: 10 + (0 +11)0*1

Theory of Computation 21

Regular expression and finite automata

* How can we represent regular expressions in finite automata?
» Example: 10 + (0 +11)0*1

Q 10+ (0+11)0*1 @
—_ >

Theory of Computation 22

Regular expression and finite automata

* How can we represent regular expressions in finite automata?
» Example: 10 + (0 +11)0*1

10

- O

(0 +11)0*1

Theory of Computation 23

Regular expression and finite automata

* How can we represent regular expressions in finite automata?
» Example: 10 + (0 +11)0*1

1 Q 0
_,O/ \@
(0 + 11) Q

Theory of Computation 24

Regular expression and finite automata

* How can we represent regular expressions in finite automata?
» Example: 10 + (0 +11)0*1

O
AO/ \.@
Q)/l'

0

0+ 11)

Theory of Computation 25

Regular expression and finite automata

* How can we represent regular expressions in finite automata?
» Example: 10 + (0 +11)0*1

e
TN T
*9&01@

Pl
1

Theory of Computation 26

Regular expression and finite automata

* Practice
» Example: (a + b)*ab*a(a + ba)*

Theory of Computation 27

DFA to regular expressions

* How can we extract regular expressions from a DFA?

" Example

Theory of Computation 28

DFA to regular expressions

* How can we extract regular expressions from a DFA?

" Example
* b*ala + b)*

Theory of Computation 29

DFA to regular expressions

* How can we extract regular expressions from a DFA?

= Basic idea

2

&1

Theory of Computation 30

DFA to regular expressions

* How can we extract regular expressions from a DFA?

= Basic idea

Theory of Computation 31

DFA to regular expressions

* How can we extract regular expressions from a DFA?

= Basic idea

Theory of Computation 32

DFA to regular expressions

* How can we extract regular expressions from a DFA?

" Arden’s theorem (rule)

¢ If P and Q are Regular Expressions over X,

* Then the following equation in R given by R = Q + RP has a unique solution R = QP~

Theory of Computation 33

DFA to regular expressions

* How can we extract regular expressions from a DFA?

" Arden’s theorem (rule)

¢ If P and Q are Regular Expressions over X,

* Then the following equation in R given by R = Q + RP has a unique solution R = QP~

Theory of Computation 34

DFA to regular expressions

* How can we extract regular expressions from a DFA?

" Arden’s theorem (rule)

¢ If P and Q are Regular Expressions over X,

* Then the following equation in R given by R = Q + RP has a unique solution R = QP~

A=Ab+ A
B =Aa+ Ba+ Bb

X Considering incoming edges

Theory of Computation 35

DFA to regular expressions

* How can we extract regular expressions from a DFA?

" Arden’s theorem (rule)

¢ If P and Q are Regular Expressions over X,

* Then the following equation in R given by R = Q + RP has a unique solution R = QP~
— ()~
>
O

A=Ab+ A =>A=A1-b"=Db"
B =Aa+ Ba+ Bb

Theory of Computation 36

DFA to regular expressions

* How can we extract regular expressions from a DFA?

" Arden’s theorem (rule)

¢ If P and Q are Regular Expressions over X,

* Then the following equation in R given by R = Q + RP has a unique solution R = QP~

— ()=
>
ON

W

A=Ab + A =>A=A-b*=>b"
B=Aa+Ba+Bb =>B =b*a+ Ba+ Bb
= b*a(a + b)*

Theory of Computation 37

DFA to regular expressions

* How can we extract regular expressions from a DFA?

" Arden’s theorem with multiple final states

“* R given by R = Q + RP has a unique solution R = QP~

Theory of Computation 38

DFA to regular expressions

* How can we extract regular expressions from a DFA?

" Arden’s theorem with multiple final states

“* R given by R = Q + RP has a unique solution R = QP~

A=A0+ A1
B =A1+ B1
C =B0+C0O0+ (1

Theory of Computation 39

DFA to regular expressions

* How can we extract regular expressions from a DFA?

" Arden’s theorem with multiple final states

“* R given by R = Q + RP has a unique solution R = QP~

FCaOC)

>

A=A0+ 1 A=0"
B =A1+ B1
C =B0+C0O0+ (1

Theory of Computation 40

DFA to regular expressions

* How can we extract regular expressions from a DFA?

" Arden’s theorem with multiple final states

“* R given by R = Q + RP has a unique solution R = QP~

FCaOC)

>

A=A0+ 2 A =0
B = Al + B1 B =B1+ 0*1=0%11* (0*1%)
C =B0+CO+C1

Theory of Computation 41

DFA to regular expressions

* How can we extract regular expressions from a DFA?

" Arden’s theorem with multiple final states

“* R given by R = Q + RP has a unique solution R = QP~

FCaOC)

>

A=A40+ 1 A=0"
B =A1+ B1 B=B1+ 0"1=0%11* (0*1%)
C =B0+CO0+(C1 C = Trap state!

Theory of Computation 42

DFA to regular expressions

* How can we extract regular expressions from a DFA?

" Arden’s theorem with multiple final states

“* R given by R = Q + RP has a unique solution R = QP~

FCaOC)

>

A=A0+ 2 A =0
B = Al + B1 B =B1+ 0*1=0%11* (0*1%)
C=B0+C0O+Cl1 A+B=0"+0"11"

Theory of Computation 43

DFA to regular expressions

* How can we extract regular expressions from a DFA?

" Another example

“* R given by R = Q + RP has a unique solution R = QP~

Theory of Computation 44

DFA to regular expressions

 Practice

" Arden’s theorem with multiple final states

** R given by R = Q + RP has a unique solution R = QP~

(O

Theory of Computation 45

Regular grammars

* Regular languages can be described by using certain grammars

" First, introducing Right-Linear and Left-Linear grammars

Languages & grammars

* Grammar (G)

= A set of rules used to define the structure of the strings in a language
*G=(V,T,S,P)

“* V: Set of variables (non-empty)

»

%* T: Set of terminal symbols (non-empty;V and T are disjoint)

+* S:Start variable (S € V)

*¢ P:Set of productions

Theory of Computation 46

Regular grammars

* Regular languages can be described by using certain grammars

" First, introducing Right-Linear and Left-Linear grammars

“* A grammar G = (V,T, S, P) is said to be right-linear if all productions are of the form
A - xB,
c A - x,

where AB€E€Vandx €T*

¢ A grammar G = (V,T, S, P) is said to be left-linear if all productions are of the form
A - Bx,

e A->ox

" A regular grammar is one that is either right-linear or left-linear

Theory of Computation 47

Regular grammars

* Regular languages can be described by using certain grammars
= Right-Linear
% E.g.,The grammar G; = ({S},{a, b}, S, P;), with P, given as S — abS$ | a is right-linear
= Left-Linear
% E.g.,The grammar G, = ({S},{a, b}, S, P,), with P, given as S — Sab | b is left-linear
" Not a regular grammar
% E.g., The grammar G; = ({S, A, B}, {a, b}, S, P;), with P given as
e S-A
e A-aB| A
B> Ab

is not regular

Theory of Computation 48

Regular grammars

* Regular grammars to finite automata

» Construct a finite automaton recognizing L(G) where G = ({S,A},{a, b}, S, P)
with P given as
“*S—>aS|bA|b
e A->ald|bS|a

Theory of Computation 49

Regular grammars

* Regular grammars to finite automata

» Construct a finite automaton recognizing L(G) where G = ({S,A},{a, b}, S, P)
with P given as
“*S—>aS|bA|b
e A->ald|bS|a

|. Each production A; — a4; induces a transition from g; to q; with label a

2. Each production Ay — a induces a transition from g, to g (final) with label a

Theory of Computation 50

Regular grammars

* Regular grammars to finite automata

» Construct a finite automaton recognizing L(G) where G = ({S,A},{a, b}, S, P)
with P given as
“S—>aS|bA|b a a

e A->ald|bS|a m] m
—©=0
b
bl /
d

®

Theory of Computation 51

Regular grammars

 Practice

» Construct a finite automaton recognizing L(G) where G = ({S,A},{a, b}, S, P)
with P given as
wS>aS|bS|ad
A - bB
B —aC

o C->a

Theory of Computation 52

Regular grammars

* DFA to regular grammar

* Construct a regular grammar from given DFA

e,

Theory of Computation 53

Regular grammars

* DFA to regular grammar

* Construct a regular grammar from given DFA
“ A; - ad; constructed if (q;,a) = qj where q; ¢ F

“ A; > adjand A; - a constructed if (q;,a) = q; where q; € F

Theory of Computation o4

Regular grammars

* DFA to regular grammar

* Construct a regular grammar from given DFA
*G=(V,T,P,S)

. V =1{S A}
e T ={a,b}
e P

« S —>aS|bA|b

« A —>aA|bAlal|b b
s >
b .\)ab

Theory of Computation 55

Description of regular language

Regular expressions

l T

DFA or NFA

l T

Regular grammar

Theory of Computation 56

Next Lecture

* Properties of Regular Languages

Theory of Computation 57

