Lecture 4 **Properties of Regular Languages** COSE215: Theory of Computation

Seunghoon Woo

Fall 2023

Practice for Lecture 3

- Find a <u>DFA</u> for the given regular expression, and then extract regular grammar
 - $(1(0+1)+00^*1)0^*1^*$

Contents

• Closure properties of regular languages

- What happens performing operations on regular languages
 - E.g., Given two regular languages L_1 and L_2 : Is their union also regular?

- What happens performing operations on regular languages
 - E.g., Given two regular languages L₁ and L₂: Is their union also regular?
 ***** YES
 - Regular languages are closed under union

• What happens performing operations on regular languages

- If L_1 and L_2 are regular languages, then so are
 - $L_1 \cup L_2$ (UNION)
 - ♦ $L_1 \cap L_2$ (INTERSECTION)
 - ♦ $L_1 \cdot L_2$ (CONCATENATION)
 - ♦ $L_1 L_2$ (DIFFERENCE)
 - ♦ $\overline{L_1}$ (COMPLEMENTATION)
 - L_1^* (STAR)

• Remember last week's lecture

Regular Expressions and regular languages

• If r is a regular expression, then L(r) is a regular language

- A language is regular if it is accepted by a DFA
- We can construct an NFA that accepts L(r) for any regular expression r

✤ NFA => DFA (equivalence)

• If L_1 and L_2 are regular languages, then so is $L_1 \cup L_2$

- 1. Let r_1 and r_2 be the regular expressions such that $L(r_1) = L_1$ and $L(r_2) = L_2$
- 2. Note that $L(r_1) \cup L(r_2) = L(r_1 + r_2)$
- 3. Here, $r_1 + r_2$ is the regular expression
- 4. Therefore, $L_1 \cup L_2$ is a regular language

• If L_1 and L_2 are regular languages, then so is $L_1 \cdot L_2$

- I. Let r_1 and r_2 be the regular expressions such that $L(r_1) = L_1$ and $L(r_2) = L_2$
- 2. Note that $L(r_1) \cdot L(r_2) = L(r_1 \cdot r_2)$
- 3. Here, $r_1 \cdot r_2$ is the regular expression
- 4. Therefore, $L_1 \cdot L_2$ is a regular language

• If L_1 is a regular language then so is L_1^*

- I. Let r_1 be the regular expression such that $L(r_1) = L_1$
- 2. Note that $(L(r_1))^* = L(r_1^*)$
- 3. Here, r_1^* is the regular expression
- 4. Therefore, L_1^* is a regular language

- If L_1 is a regular language, then so is $\overline{L_1}$
 - How to generate a DFA \overline{M} that accepts $\overline{L_1}$?

♦ Consider the following DFA *M* such that $L(M) = \{w11 \mid w \in \{0, 1\}^*\}$

- If L_1 is a regular language, then so is $\overline{L_1}$
 - How to generate a DFA \overline{M} that accepts $\overline{L_1}$?

\Rightarrow DFA \overline{M} that can accept $L(\overline{M})$ is constructed as follows

• If L_1 is a regular language, then so is $\overline{L_1}$

- Consider a DFA $M = (Q, \Sigma, \delta, q_0, F)$ that accept L_1
- We can construct DFA $\overline{M} = (Q, \Sigma, \delta, q_0, Q F)$ that accept $\overline{L_1}$
- Therefore, $\overline{L_1}$ is a regular language

- If L_1 and L_2 are regular languages, then so is $L_1 \cap L_2$
 - Using DeMorgan's Law
 - $\bigstar \overline{A \cup B} = \overline{A} \cap \overline{B}$

 $\, \bigstar \, \overline{A \cap B} \, = \, \overline{A} \cup \overline{B}$

• $L_1 \cap L_2 = \overline{(\overline{L_1} \cup \overline{L_2})}$

• If L_1 and L_2 are regular languages, then so are $\overline{L_1}$ and $\overline{L_2}$

 \clubsuit If $\overline{L_1}$ and $\overline{L_2}$ are regular languages, then so are $\overline{L_1} \cup \overline{L_2}$

• If $\overline{L_1} \cup \overline{L_2}$ is a regular language, then so is $\overline{(\overline{L_1} \cup \overline{L_2})}$

• Therefore, $L_1 \cap L_2$ is a regular language

- If L_1 and L_2 are regular languages, then so is $L_1 L_2$
 - We can use the following fact

 $\clubsuit L_1 - L_2 = L_1 \cap \overline{L_2}$

• Therefore, $L_1 - L_2$ is a regular language

Next Lecture

• Pumping Lemma: Identifying non-regular languages