Lecture 4 **Properties of Regular Languages** COSE215: Theory of Computation

Seunghoon Woo

Fall 2023

Practice for Lecture 3

- Find a <u>DFA</u> for the given regular expression, and then extract regular grammar
 - $(1(0+1)+00^*1)(0+1)^*$

- $S \rightarrow 1A \mid 0B$
- $A \rightarrow 0C \mid 1C \mid 0 \mid 1$
- $B \rightarrow 0B \mid 1C \mid 1$
- $C \rightarrow 0C \mid 1C \mid 0 \mid 1$

Example State Machine

Bluetooth L2CAP

Theory of Computation

Contents

• Pumping Lemma: Identifying non-regular languages

• Non-regular languages

- Non-regular languages cannot be recognized by finite automata
- Claim: $L = \{0^n 1^n \mid n \ge 0\}$ is not regular

✤ L is a regular language if we can construct a DFA for L

 \clubsuit However, DFA has limited temporary storage, so it cannot remember n

Pigeonhole principle

- If n pigeons are placed in m pigeon holes,
 - ***** Then one hole will contain at least n/m pigeons
- If we put n objects into m boxes and n > m, then
 at least one box must have more than one object in it

• Basic idea to identify non-regular languages

- Consider a finite automaton with n state
- Given an input string with length m where m > n
- Then, one or more states will inevitably be visited multiple times

• Pumping lemma

• Pumping lemma

Pumping lemma

- Let L be a regular language
- There exists a positive integer m such that any $w \in L$, if $|w| \ge m$, there exists w = xyz such that
 - $|xy| \le m$ $|y| \ge 1$ $For all \ i \ge 0, \ xy^i z \in L$

Pumping lemma

- Let L be a regular language
- There exists a positive integer m such that any $w \in L$, if $|w| \ge m$, there exists w = xyz such that
 - $|xy| \le m$
 - $\bigstar |y| \ge 1$
 - *****For all $i \ge 0$, $xy^i z \in L$
- A string of sufficiently large length $(|w| \ge m)$ can be represented in the form of xyz, and xy^iz , which is pumped "y" *i* times, can also always belong to this language

• Proof of the pumping lemma

• If L is regular, there exists a DFA $M = (Q, \Sigma, \delta, q_0, F)$ that recognizes it

• Proof of the pumping lemma

- If L is regular, there exists a DFA $M = (Q, \Sigma, \delta, q_0, F)$ that recognizes it
- Let |Q| = n + 1 (M has states labeled q_0, q_1, \dots, q_n)

Proof of the pumping lemma

- If L is regular, there exists a DFA $M = (Q, \Sigma, \delta, q_0, F)$ that recognizes it
- Let |Q| = n + 1 (M has states labeled q_0, q_1, \dots, q_n)
- Take a string $w \in L$ such that $|w| \ge m = n + 1$

Proof of the pumping lemma

- If L is regular, there exists a DFA $M = (Q, \Sigma, \delta, q_0, F)$ that recognizes it
- Let |Q| = n + 1 (*M* has states labeled q_0, q_1, \dots, q_n)
- Take a string $w \in L$ such that $|w| \ge m = n + 1$
- Consider the set of states M goes through as it processes $w: q_0, q_i, q_j, \dots, q_f$

Proof of the pumping lemma

- If L is regular, there exists a DFA $M = (Q, \Sigma, \delta, q_0, F)$ that recognizes it
- Let |Q| = n + 1 (M has states labeled q_0, q_1, \dots, q_n)
- Take a string $w \in L$ such that $|w| \ge m = n + 1$
- Consider the set of states M goes through as it processes $w: q_0, q_i, q_j, \dots, q_f$
- Since this sequence has |w| + 1 states, at least one state must be repeated

Such a repetition must start no later than the n^{th} move

♦ E.g., $q_0, q_i, q_j, ..., q_r, ..., q_r, ..., q_f$

Proof of the pumping lemma

- If L is regular, there exists a DFA $M = (Q, \Sigma, \delta, q_0, F)$ that recognizes it
- Let |Q| = n + 1 (M has states labeled q_0, q_1, \dots, q_n)
- Take a string $w \in L$ such that $|w| \ge m = n + 1$
- Consider the set of states M goes through as it processes $w: q_0, q_i, q_j, \dots, q_f$
- Since this sequence has |w| + 1 states, at least one state must be repeated

* Such a repetition must start no later than the n^{th} move

♦ E.g., $q_0, q_i, q_j, ..., q_r, ..., q_r, ..., q_f$

• This indicates that there must be substrings x, y, z of w such that

 $\bigstar \ \delta^*(q_0, x) = q_r, \quad \delta^*(q_r, y) = q_r, \quad \delta^*(q_r, z) = q_f \ (\text{with } |xy| \le n+1 \text{ and } |y| \ge 1)$

Proof of the pumping lemma

- If L is regular, there exists a DFA $M = (Q, \Sigma, \delta, q_0, F)$ that recognizes it
- Let |Q| = n + 1 (*M* has states labeled q_0, q_1, \dots, q_n)
- Take a string $w \in L$ such that $|w| \ge m = n + 1$
- Consider the set of states M goes through as it processes $w: q_0, q_i, q_j, \dots, q_f$
- Since this sequence has |w| + 1 states, at least one state must be repeated
 - * Such a repetition must start no later than the n^{th} move
 - $\bigstar \text{ E.g., } q_0, q_i, q_j, \dots, q_r, \dots, q_r, \dots, q_f$
- This indicates that there must be substrings x, y, z of w such that

 $\bigstar \ \delta^*(q_0, x) = q_r, \quad \delta^*(q_r, y) = q_r, \quad \delta^*(q_r, z) = q_f \ (\text{with } |xy| \le n+1 \text{ and } |y| \ge 1)$

From this, the followings can be satisfied

 $\mathbf{\bullet} \ \delta^*(q_0, xz) = q_f, \quad \delta^*(q_0, xy^2 z) = q_f, \quad \delta^*(q_0, xy^3 z) = q_f, \quad \mathbf{\delta}^*(\mathbf{q}_0, \mathbf{xy}^i z) = \mathbf{q}_f$

• Pumping lemma

• Show that $L = \{a^n b^n : n \ge 0\}$ is not regular

• Pumping lemma

• Show that $L = \{a^n b^n : n \ge 0\}$ is not regular

 \clubsuit Assume that L is regular, so that the pumping lemma must hold

 \bigstar Let m = n

✤ Because $|xy| \le m$, the substring y must consist entirely of a's (suppose |y| = k)

♦ When
$$i = 0$$
, then $w_0 = a^{m-k}b^m$

 $a^{m-k}b^m$ clearly not in $L \Rightarrow L$ is not regular

Pumping lemma

- Let Σ = {a, b}. Show that L = {ww^R: w ∈ Σ*} is not regular
 * w^R = string reverse
 - E.g., w = abb, then $w^R = bba$

Pumping lemma

• Let $\Sigma = \{a, b\}$. Show that $L = \{ww^R : w \in \Sigma^*\}$ is not regular

 \clubsuit Assume that L is regular, so that the pumping lemma must hold

- Consider a positive integer m and let $w' = ww^R$ be $a^m b^m b^m a^m$
- ✤ Because $|xy| \le m$, the substring y must consist entirely of a's (suppose |y| = k)
- ♦ When i = 0, then $w' = a^{m-k}b^m b^m a^m (\notin L)$
- L is not regular

$$a^{m}$$
 b^{m} b^{m} a^{m}
aaa ... aaabbb ... bbbbbb ... bbbaaa ... aaa

Pumping lemma

- Pumping Lemma is violated => not a regular language
- Pumping Lemma is not violated => do not know if it is regular language or not

Pumping lemma

• Let $\Sigma = \{a, b\}$. Show that $L = \{w \in \Sigma^* : n_a(w) < n_b(w)\}$ is not regular

Pumping lemma

• Let $\Sigma = \{a, b\}$. Show that $L = \{w \in \Sigma^* : n_a(w) < n_b(w)\}$ is not regular

 \clubsuit Assume that L is regular, so that the pumping lemma must hold

- **\bigstar** Consider a positive integer *m* and $w = a^m b^{m+1}$
- ✤ Because $|xy| \le m$, the substring y must consist entirely of a's (suppose $|y| = k \ge 1$)
- ♦ When i = 2, then $w = a^{m+k}b^{m+1} (\notin L)$
- L is not regular

Pumping lemma

• Let $\Sigma = \{a, b\}$. Show that $L = \{ww | w \in \Sigma^*\}$ is not regular

• Pumping lemma

• Let $\Sigma = \{a, b\}$. Show that $L = \{ww | w \in \Sigma^*\}$ is not regular

 \clubsuit Assume that L is regular, so that the pumping lemma must hold

- Consider a positive integer m and $w = a^m b a^m b$
- ✤ Because $|xy| \le m$, the substring y must consist entirely of a's (suppose $|y| = k \ge 1$)
- ♦ When i = 0, then $w = a^{m-k}ba^m b$ ($\notin L$)
- L is not regular

• Pumping lemma: practice

• Show that $L = \{a^i b^j c^k | i + j \le k\}$ is not regular

• Pumping lemma: practice

• Show that
$$L = \{0^{n^2} | n \ge 0\}$$
 is not regular

Next Lecture

• Context-Free Languages