
COSE215: Theory of Computation

Seunghoon Woo

Fall 2023

1Theory of Computation

Lecture 5

Context-Free Languages

Context-Free Languages

• Practice: 𝐿 = 𝑤 ∈ 𝑎, 𝑏 ∗ 𝑛𝑎 𝑤 = 𝑛𝑏 𝑤

▪ One possible production rule

❖𝑆 → 𝑎𝑆𝑏 𝑏𝑆𝑎 𝑆𝑆 | 𝜆

▪ Question (1)

❖𝑆 → 𝑎𝐴 𝐴𝑎 𝜆

❖𝐴 → 𝑏𝑆 | 𝑆𝑏

▪ Question (2)

❖𝑆 → 𝑎𝑏𝑆 𝑆𝑎𝑏 𝑎𝑆𝑏 | 𝑏𝑎𝑆 𝑆𝑏𝑎 𝑏𝑆𝑎 | 𝜆

Theory of Computation 2

Context-Free Languages

• Practice: 𝐿 = 𝑤 ∈ 𝑎, 𝑏 ∗ 𝑛𝑎 𝑤 = 𝑛𝑏 𝑤

▪ One possible production rule

❖𝑆 → 𝑎𝑆𝑏 𝑏𝑆𝑎 𝑆𝑆 | 𝜆

❖𝑆𝑆 → 𝑎𝑆𝑏𝑆 𝑏𝑆𝑎𝑆 𝑆𝑎𝑆𝑏 | 𝑆𝑏𝑆𝑎 . .

▪ Question (1)

❖𝑆 → 𝑎𝐴 𝐴𝑎 𝜆

❖𝐴 → 𝑏𝑆 | 𝑆𝑏

❖baab

▪ Question (2)

❖𝑆 → 𝑎𝑏𝑆 𝑆𝑎𝑏 𝑎𝑆𝑏 | 𝑏𝑎𝑆 𝑆𝑏𝑎 𝑏𝑆𝑎 | 𝜆

❖I think this answer is correct ☺

Theory of Computation 3

Midterm exam!

• Date: Oct. 24th (Tuesday), 16:30 – 17:45 (75 minutes)

• Location: 301 and 302, Aegineung (애기능생활관)

▪ Please check your exam room on Blackboard

• Coverage: Lecture 1 – Lecture 6_1 (CFG simplification)

• Format: Closed book, closed notes, no programming questions

• Failure to attend exam without permission => F

• Don’t be late!

▪ You cannot enter the exam rooms after 17:00

Theory of Computation 4

Contents

• Parsing and ambiguity

• Context-free grammars and programming languages

Theory of Computation 5

Parsing and Ambiguity

• We have focused on detecting 𝑳 from a given 𝑮

• Membership algorithm

▪ Given a string 𝑤 of terminals, we want to know whether or not 𝑤 is in 𝐿 𝐺

• Parsing

▪ If 𝑤 is in 𝐿 𝐺 , we then find a derivation of 𝑤

▪ A sequence of productions by which a 𝑤 ∈ 𝐿(𝐺) is derived

Theory of Computation 6

Parsing and Ambiguity

• Example

▪ Consider the grammar 𝑆 → 𝑆𝑆 𝑎𝑆𝑏 𝑏𝑆𝑎 | 𝜆

❖ If the string 𝑎𝑎𝑏𝑏 is in 𝐿 𝐺 ?

❖ If so, how the string can be derived?

Theory of Computation 7

Parsing and Ambiguity

• Example

▪ Consider the grammar 𝑆 → 𝑆𝑆 𝑎𝑆𝑏 𝑏𝑆𝑎 | 𝜆

❖ If the string 𝑎𝑎𝑏𝑏 is in 𝐿 𝐺 ?

❖ If so, how the string can be derived?

Theory of Computation 8

𝑆 ⇒ 𝑆𝑆 𝑆 ⇒ 𝑎𝑆𝑏 𝑆 ⇒ 𝑏𝑆𝑎 𝑆 ⇒ 𝜆

Parsing and Ambiguity

• Example

▪ Consider the grammar 𝑆 → 𝑆𝑆 𝑎𝑆𝑏 𝑏𝑆𝑎 | 𝜆

❖ If the string 𝑎𝑎𝑏𝑏 is in 𝐿 𝐺 ?

❖ If so, how the string can be derived?

Theory of Computation 9

𝑆 ⇒ 𝑺𝑆 ⇒ 𝑆𝑆𝑆
𝑆 ⇒ 𝑺𝑆 ⇒ 𝑎𝑆𝑏𝑆
𝑆 ⇒ 𝑺𝑆 ⇒ 𝑏𝑆𝑎𝑆
𝑆 ⇒ 𝑺𝑆 ⇒ 𝑆

𝑆 ⇒ 𝑆𝑆 𝑆 ⇒ 𝑎𝑆𝑏

𝑆 ⇒ 𝑎𝑺𝑏 ⇒ 𝑎𝑆𝑆𝑏
𝑆 ⇒ 𝑎𝑺𝑏 ⇒ 𝑎𝑎𝑆𝑏𝑏
𝑆 ⇒ 𝑎𝑺𝑏 ⇒ 𝑎𝑏𝑆𝑎𝑏
𝑆 ⇒ 𝑎𝑺𝑏 ⇒ 𝑎𝑏

Parsing and Ambiguity

• Example

▪ Consider the grammar 𝑆 → 𝑆𝑆 𝑎𝑆𝑏 𝑏𝑆𝑎 | 𝜆

❖ If the string 𝑎𝑎𝑏𝑏 is in 𝐿 𝐺 ?

❖ If so, how the string can be derived?

Theory of Computation 10

𝑆 ⇒ 𝑺𝑆 ⇒ 𝑆𝑆𝑆
𝑆 ⇒ 𝑺𝑆 ⇒ 𝑎𝑆𝑏𝑆
𝑆 ⇒ 𝑺𝑆 ⇒ 𝑏𝑆𝑎𝑆
𝑆 ⇒ 𝑺𝑆 ⇒ 𝑆

𝑆 ⇒ 𝑆𝑆 𝑆 ⇒ 𝑎𝑆𝑏

𝑆 ⇒ 𝑎𝑺𝑏 ⇒ 𝑎𝑆𝑆𝑏
𝑆 ⇒ 𝑎𝑺𝑏 ⇒ 𝑎𝑎𝑆𝑏𝑏
𝑆 ⇒ 𝑎𝑺𝑏 ⇒ 𝑎𝑏𝑆𝑎𝑏
𝑆 ⇒ 𝑎𝑺𝑏 ⇒ 𝑎𝑏

𝑆 ⇒ 𝑎𝑆𝑏 ⇒ 𝑎𝑎𝑆𝑏𝑏 ⇒ 𝑎𝑎𝑏𝑏

Parsing and Ambiguity

• Ambiguity

▪ A grammar is ambiguous if it derives some strings with two or more parse trees

▪ Consider the grammar 𝑆 → 𝑎𝑆𝑏 𝑆𝑆 𝜆

❖The string 𝑎𝑎𝑏𝑏 can be derived from more than one parse tree

Theory of Computation 11

𝑆 ⇒ 𝑎𝑆𝑏 ⇒ 𝑎𝑎𝑆𝑏𝑏 ⇒ 𝑎𝑎𝑏𝑏 𝑆 ⇒ 𝑆𝑆 ⇒ 𝑆 ⇒ 𝑎𝑆𝑏 ⇒ 𝑎𝑎𝑆𝑏𝑏 ⇒ 𝑎𝑎𝑏𝑏

Parsing and Ambiguity

• Ambiguity

▪ Unfortunately…

❖There is no general algorithm to remove ambiguity in CFGs

❖There is also no algorithm that determines that a CFG is ambiguous

▪ Alternatively, we can develop an unambiguous grammar

❖ By the use of precedence and associativity

Theory of Computation 12

Parsing and Ambiguity

• Eliminating ambiguity

▪ Consider the grammar 𝐺 = (𝐸, 𝐼 , 𝑎, 𝑏, 𝑐, +,∗, , , 𝐸, 𝑃) with 𝑃 given by

❖ 𝐸 → 𝐼

❖ 𝐸 → 𝐸 + 𝐸

❖ 𝐸 → 𝐸 ∗ 𝐸

❖ 𝐸 → (𝐸)

❖ 𝐼 → 𝑎 𝑏 𝑐

▪ This grammar is ambiguous

❖ Consider the string 𝑎 + 𝑏 ∗ 𝑐

Theory of Computation 13

Parsing and Ambiguity

• Eliminating ambiguity

▪ We can resolve the ambiguity by prioritizing operators (e.g., ∗ ≫ +)

❖ 𝐸 → 𝑇

❖ 𝑇 → 𝐹

❖ 𝐹 → 𝐼

❖ 𝐸 → 𝐸 + 𝑇

❖ 𝑇 → 𝑇 ∗ 𝐹

❖ 𝐹 → (𝐸)

❖ 𝐼 → 𝑎 𝑏 𝑐

Theory of Computation 14

Context-Free Grammars and Programming Languages

• CFG can be used to represent a programming language

▪ One of the most important uses of the theory of formal languages

❖The definition of programming languages

❖The construction of interpreters and compilers

Theory of Computation 15

Context-Free Grammars and Programming Languages

• CFG can be used to represent a programming language

▪ One of the most important uses of the theory of formal languages

❖The definition of programming languages

❖The construction of interpreters and compilers

▪ Regular languages

❖ Recognition of simple patterns

▪ Context-free languages

❖ Model more complicated aspects

Theory of Computation 16

Context-Free Grammars and Programming Languages

• Backus-Naur Form (BNF)

▪ A form used in programming languages to express the grammar of the language

as a mathematical formula

▪ E.g.,

<expression> ∷= <term> | <expression> + <term>,

<term> ∷= <factor> | <term> * <factor>, …

where * and + are terminal symbols, and ∷= represents →

Theory of Computation 17

Context-Free Grammars and Programming Languages

• Backus-Naur Form (BNF)

▪ A form used in programming languages to express the grammar of the language

as a mathematical formula

▪ E.g.,

<expression> ∷= <term> | <expression> + <term>,

<term> ∷= <factor> | <term> * <factor>, …

where * and + are terminal symbols, and " ∷= " represents " → "

▪ E.g., the while statement in C language

<while_statement> ∷= while <expression> <statement>

Theory of Computation 18

Context-Free Grammars and Programming Languages

• CFG can be used to represent a programming language

Theory of Computation 19

<Excerpts from Professor Hakjoo Oh's lecture materials>

Context-Free Grammars and Programming Languages

• CFG can be used to parse a programming language

▪ ANTLR (https://www.antlr.org)

❖A parser generator widely used for reading or parsing structured text or binary files

❖From a grammar, it generates a parser that can build and walk parse trees

▪ LLVM (https://llvm.org)

❖Compiler tool chain including parsers for popular languages

Theory of Computation 20

https://www.antlr.org/
https://llvm.org/

Next Lecture

• Simplification of Context-Free Grammars and Normal Forms

Theory of Computation 21

