Lecture 5

Context-Free Languages
COSE215: Theory of Computation

Seunghoon Woo

Fall 2023

Theory of Computation 1

Context-Free Languages

* Practice: L = {w € {a,b}" | n,(w) = n,(w)}
* One possible production rule
S —>aSb | bSa|SS|A
" Question ()
oS —>ad|Aa| A
A - bS | Sh
" Question (2)
S —> abS|Sab | aSb | baS | Sba | bSa | A

Theory of Computation 2

Context-Free Languages

* Practice:L = {w € {a,b}" | n,(w) = np(w)}
" One possible production rule
S —>aSb|bSa|SS|A
*SS — aSbS | bSaS | SaSb | SbSa ..
" Question (1)
wS>ad|Aal|A
A > bS|Sh
“*baab ®
= Question (2)
S —> abS|Sab|aSb|baS|Sha|bSa|A

*| think this answer is correct ©

Theory of Computation 3

Midterm exam!

* Date: Oct. 24" (Tuesday), 16:30 — 17:45 (75 minutes)
* Location: 301 and 302, Aegineung (O} 7| & 2h

" Please check your exam room on Blackboard
* Coverage: Lecture 1 — Lecture 6_1 (CFG simplification)
* Format: Closed book, closed notes, no programming questions
* Failure to attend exam without permission => F

e Don’t be late!

= You cannot enter the exam rooms after 17:00

Theory of Computation 4

Contents

* Parsing and ambiguity

* Context-free grammars and programming languages

Theory of Computation 5

Parsing and Ambiguity

* We have focused on detecting L from a given G

* Membership algorithm

= Given a string w of terminals, we want to know whether or not w is in L(G)
* Parsing

= [fwisin L(G),we then find a derivation of w

= A sequence of productions by whicha w € L(G) is derived

Theory of Computation 6

Parsing and Ambiguity

 Example

» Consider the grammar S — SS | aSb | bSa | A
% If the string aabb is in L(G)!?

¢ If so, how the string can be derived?

Theory of Computation 4

Parsing and Ambiguity

 Example
» Consider the grammar S — SS | aSb | bSa | A
% If the string aabb is in L(G)!?

¢ If so, how the string can be derived?

S=S8S S = aSb S = bSa S=>1

Theory of Computation 8

Parsing and Ambiguity

 Example
» Consider the grammar S — SS | aSb | bSa | A
% If the string aabb is in L(G)!?

¢ If so, how the string can be derived?

S=S8S S = aSh
S=5855=S8SS S = aSb = aSSb
S =85S = aShS S = aSb = aaSbb
S =585 = bSaS S = aSb = abSab

S=>855=>3S S = aSb = ab

Theory of Computation 9

Parsing and Ambiguity

 Example
» Consider the grammar S — SS | aSb | bSa | A
% If the string aabb is in L(G)!?

¢ If so, how the string can be derived?

S=S5S S = aSh
S = aSb = aaSbb = aabb
S= 85 =85S S = aSb = aSSb
S =SS = aShS S = aSb = aaSbb
S = 58S = bSaS S = aSb = abSab
S=>855=>3S S = aSb = ab

Theory of Computation 10

Parsing and Ambiguity

* Ambiguity
= A grammar is ambiguous if it derives some strings with two or more parse trees

» Consider the grammar S = aSbh | S5 | A

¢ The string aabb can be derived from more than one parse tree

S = aSb = aaSbb = aabb S=>55=>S5>=>aSb = aaSbb = aabb

Theory of Computation 11

Parsing and Ambiguity

* Ambiguity
* Unfortunately...

¢ There is no general algorithm to remove ambiguity in CFGs

¢ There is also no algorithm that determines that a CFG is ambiguous

= Alternatively, we can develop an unambiguous grammar

¢ By the use of precedence and associativity

Theory of Computation 12

Parsing and Ambiguity

* Eliminating ambiguity

» Consider the grammar G = ({E,I},{a, b, c,+,%,(,)}, E, P) with P given by

S E->I
“E->E+E
FE->ExE
& E > (E)
] »al|bl|c
" This grammar is ambiguous

¢ Consider the stringa + b * ¢

Theory of Computation

Parsing and Ambiguity

* Eliminating ambiguity

* We can resolve the ambiguity by prioritizing operators (e.g., * > +)

S EST @
T >F /l\
o F -1 Qi) ®/C?\
S E->E+T @ @ @ @
ST >TxF | ! |
“ F - (E) Qj) Qj) C?
]l »al|bl|c @ @ @
| {
(@

Theory of Computation 14

Context-Free Grammars and Programming Languages

* CFG can be used to represent a programming language

* One of the most important uses of the theory of formal languages
¢ The definition of programming languages

¢ The construction of interpreters and compilers

Theory of Computation 15

Context-Free Grammars and Programming Languages

* CFG can be used to represent a programming language

* One of the most important uses of the theory of formal languages
¢ The definition of programming languages

¢ The construction of interpreters and compilers

* Regular languages

¢ Recognition of simple patterns

* Context-free languages

¢ Model more complicated aspects

Theory of Computation 16

Context-Free Grammars and Programming Languages

* Backus-Naur Form (BNF)

" A form used in programming languages to express the grammar of the language

as a mathematical formula

" Eg,
<expression> ::= <term> | <expression> + <term>,
<term> ::= <factor> | <term> * <factor>, ...
where * and + are terminal symbols, and ::= represents —

Theory of Computation 17

Context-Free Grammars and Programming Languages

* Backus-Naur Form (BNF)

" A form used in programming languages to express the grammar of the language

as a mathematical formula

" Eg,
<expression> ::= <term> | <expression> + <term>,
<term> ::= <factor> | <term> * <factor>, ...
where * and + are terminal symbols,and " ::= " represents " - "

" E.g., the while statement in C language

<while_statement> ::= while <expression> <statement>

Theory of Computation 18

Context-Free Grammars and Programming Languages

* CFG can be used to represent a programming language

a - n|lx|ay+t+as|a*xaz|a; —as
b — true|false|ay =as]|a; <ag|-b]| by Abs
c — x:=a|skip|ci;co | if beq co | while b e

<Excerpts from Professor Hakjoo Oh's lecture materials>

Theory of Computation 19

Context-Free Grammars and Programming Languages

* CFG can be used to parse a programming language

= ANTLR (https://www.antlr.org)

¢ A parser generator widely used for reading or parsing structured text or binary files

“*From a grammar, it generates a parser that can build and walk parse trees

" LLVM (https://llvm.org)

¢ Compiler tool chain including parsers for popular languages

Theory of Computation

o £) s
"while' parExpression statemen

"do’ statement 'while

"try' block (catches fina

' resourceSpecification block catches?

statementExpression ;'

parExpress

11yBlock?

ion '3

20

https://www.antlr.org/
https://llvm.org/

Next Lecture

* Simplification of Context-Free Grammars and Normal Forms

Theory of Computation 21

