Simplification of Context-Free Grammars and Normal Forms

COSE215: Theory of Computation

Seunghoon Woo

Fall 2023

Contents

• Simplification of Context-Free Grammars

Context-Free Grammars

• CFG can contain some useless rules

• E.g., Given a context-free grammar G with the production rules $\Rightarrow S \rightarrow aSb \mid \lambda \mid A$

 $\clubsuit A \to aA$

• Here, $S \rightarrow A$ plays no role

A cannot be transformed into a terminal string (never lead to a sentence)

• Therefore, we can remove $S \rightarrow A$ and $A \rightarrow aA$

The language is unaffected!

Context-Free Grammars

• Three simplification techniques

- I. Eliminating λ –productions
- 2. Eliminating unit productions
- 3. Eliminating useless variables

• Eliminating λ -productions

- Any production of a CFG of the form $A \rightarrow \lambda$ is called a λ -production
- Any variable A for which the derivation $A \stackrel{*}{\Rightarrow} \lambda$ is possible is called **nullable**
- A grammar may generate a language not containing λ yet have some λ -productions or nullable variables

• In this case, the λ -productions can be removed

• Eliminating λ -productions: example

Consider the grammar

 $\clubsuit S \to aS_1b$

 $\clubsuit S_1 \to aS_1b \mid \lambda$

which generates the language $L(G) = \{a^n b^n : n \ge 1\}$ (where $\lambda \notin L(G)$)

- Therefore, we can remove λ -productions
 - $S \to aS_1b \mid ab$ $S_1 \to aS_1b \mid ab$

• How to eliminate λ -productions?

- I. Find all nullable variables
- 2. Construct a new CFG with production rules produced by replacing nullable variables with λ in all combinations, except for the λ -production

- Consider the grammar

- Consider the grammar
- Nullable variables: (A, B, C)

- Consider the grammar
- Nullable variables: (A, B, C)
- Replace nullable variables with λ (e.g., replace A, B, C to λ in S)

- Result grammar with no λ -productions
 - $\bigstar S \rightarrow ABaC \mid BaC \mid AaC \mid ABa \mid aC \mid Aa \mid Ba \mid a$
 - $\bigstar A \to BC \mid B \mid C$
 - $\clubsuit B \to b$
 - $\clubsuit C \to D$
 - $\clubsuit D \to d$

• Eliminating unit productions

- Any production of a CFG of the form $A \rightarrow B$ is called a **unit production**
- A pair of variables $(A, B) \in V \times V$ is a **unit pair** if $A \stackrel{*}{\Rightarrow} B$

♦ (A, A) is a unit pair for all $A \in V$

• How to eliminate unit productions?

- I. Find all unit pairs
- 2. Construct a new CFG by adding all possible non-unit productions for each unit pair (A, B)

- Consider the grammar
 - $S \to Aa \mid B$ $A \to a \mid bc \mid B$
 - $\clubsuit B \to A \mid bb$

- Consider the grammar
 - $\clubsuit S \to Aa \mid B$
 - $\bigstar A \to a \mid bc \mid B$
 - $\clubsuit B \to A \mid bb$
- All unit pairs: (S, S), (A, A), (B, B), (S, A), (S, B), (A, B), (B, A)

- Consider the grammar
 - $\clubsuit S \to Aa \mid B$
 - $\bigstar A \to a \mid bc \mid B$
 - $\clubsuit B \to A \mid bb$
- All unit pairs: (S, S), (A, A), (B, B), (S, A), (S, B), (A, B), (B, A)
- Consider non-unit productions in (S, S), (A, A), and (B, B)
 - $S \to Aa$ $A \to a \mid bc$ $B \to bb$

• Eliminating unit productions: example

- Consider non-unit productions in (S, S), (A, A), and (B, B)
 - $\clubsuit S \to Aa$

$$A \to a \mid bc$$

- $\clubsuit B \to bb$
- Consider possible non-unit productions in (S, A), (S, B), (A, B), (B, A)
 - $S \to a \mid bc \mid bb$ $A \to bb$ $B \to a \mid bc$

Original grammar

$$S \to Aa \mid B$$
$$A \to a \mid bc \mid B$$

 $\clubsuit B \to A \mid bb$

- Result grammar with no unit productions
 - $\clubsuit S \rightarrow Aa \mid a \mid bc \mid bb$
 - $\clubsuit A \to a \mid bc \mid bb$
 - $\clubsuit B \to a \mid bc \mid bb$

- Design an equivalent CFG with no unit productions
 - $\clubsuit E \to E + T \mid T$
 - $\clubsuit T \to T * F \mid F$
 - $\clubsuit F \to (E) \mid a$

• Eliminating unit productions: example

Result grammar with no unit productions

 $\bigstar E \to E + T \mid T * F \mid (E) \mid a$

 $\bigstar T \to T * F \mid (E) \mid a$

 $\clubsuit F \to (E) \mid a$

• Eliminating useless variables

- A variable $A \in V$ is said to be **useful** if and only if there is at least one $w \in L(G)$ such that $S \stackrel{*}{\Rightarrow} xAy \stackrel{*}{\Rightarrow} w$ (where $x, y \in (V \cup T)^*$)
- In other words, a variable is useful if and only if it occurs in at least one derivation
- A variable that is not useful is called useless

• Eliminating useless variables: example

- Consider CFG with production rules
 - $\clubsuit S \rightarrow Aa \mid a \mid bc \mid bb$
 - $\bigstar A \to a \mid bc \mid bb$
 - $\clubsuit B \to a \mid bc \mid bb$
- The variable B is **useless**!

• How to eliminate useless variables?

- I. Find all useless variables
- 2. Remove them!

• Example

- Consider CFG with production rules
 - $\clubsuit S \to aS \mid A \mid C$
 - $\clubsuit A \to a$
 - $\clubsuit B \to aa$
 - $\clubsuit C \to aCb$

• Example

- Consider CFG with production rules
 - $\clubsuit S \to aS \mid A \mid C$
 - $\clubsuit A \to a$
 - $\clubsuit B \to aa$
 - $\clubsuit \ C \to aCb$
- B is unreachable from the start variable
- *C* cannot derive any words

• Example

Result grammar with no useless variables

 $S \to aS \mid A$ $A \to a$

• Practice

- Design an equivalent CFG without unit productions
 - $S \rightarrow 0A \mid 1B \mid C$ $A \rightarrow 0S \mid 00$ $B \rightarrow 1 \mid A$ $C \rightarrow 01$

• Practice

- Design an equivalent CFG without unit productions
 - $S \rightarrow 0A \mid 1B \mid C$ $A \rightarrow 0S \mid 00$ $B \rightarrow 1 \mid A$ $C \rightarrow 01$

• Practice

• Design an equivalent CFG without λ –productions

• Practice

• Design an equivalent CFG without λ –productions

Next Lecture

• Class review for the midterm exam