Simplification of Context-Free Grammars and Normal Forms

COSE215: Theory of Computation

Seunghoon Woo

Fall 2023

Contents

Normal Forms

Normal Forms

- There are many normal forms we can establish for CFGs
- We consider two major normal forms
 - Chomsky Normal Form (CNF)
 - Greibach Normal Form (GNF)

Normal Forms

Advantages

- Grammars in this form are far easier to analyze
- This can remove ambiguity
- All derivations can be represented by binary trees (for CNF)
- Useful for providing the equivalence of CFG and PDA (for GNF)

•••

Definition

- Strictly limiting the number of symbols on the right of a production
- A CFG (V, T, S, P) is in Chomsky normal form if all Ps are of the form $A \rightarrow BC$ $(A \in V \text{ and } B, C \in V \setminus \{S\})$

or

$$A \rightarrow x \ (x \in T)$$

or

 $\clubsuit S \to \lambda$

• Any CFG can be converted to CNF

- Example
 - $\clubsuit S \to ABa$
 - $\clubsuit A \rightarrow aab$
 - $\clubsuit B \rightarrow Ac$

• Any CFG can be converted to CNF

Step (0): If S in the right-hand side of a rule, add a new start variable S' and a production $S' \rightarrow S$

• Any CFG can be converted to CNF

Step (1): Eliminate λ -productions, unit productions, and useless variables

• Any CFG can be converted to CNF

Step (2): If a terminal symbol a appears in a right-hand side of a rule, replace it with a new variable A and add a production $A \rightarrow a$

Any CFG can be converted to CNF

Step (2): If a terminal symbol a appears in a right-hand side of a rule, replace it with a new variable A and add a production $A \rightarrow a$

Consider the original grammar

 $\bigstar \operatorname{\mathsf{Add}} B_a \to a, B_b \to b \text{ and } B_c \to c$

Then the original production rules can be changed to

- $S \rightarrow ABB_a$
- $A \rightarrow B_a B_a B_b$
- $B \rightarrow AB_c$
- $B_a \rightarrow a$
- $B_b \rightarrow b$
- $B_c \rightarrow c$

• Any CFG can be converted to CNF

Step (3): If a rule has more than two variables in the right-hand side, replace them with a chain of variables

- Consider the original grammar
 - \clubsuit Split production rules for S and A
 - Then the original production rules can be changed to
 - $S \rightarrow AD_1$
 - $D_1 \rightarrow BB_a$
 - $A \rightarrow B_a D_2$
 - $D_2 \rightarrow B_a B_b$
 - $B \rightarrow AB_c$
 - $B_a \rightarrow a$
 - $B_b \rightarrow b$
 - $B_c \rightarrow c$

Example

 $\clubsuit B \rightarrow Ac$

Any CFG can be converted to CNF

<u>Step (4)</u>: If λ is contained in the original CFG, then add a production $S \rightarrow \lambda$ (or $S' \rightarrow \lambda$)

- $S \rightarrow AD_1$
- $D_1 \rightarrow BB_a$
- $A \rightarrow B_a D_2$
- $D_2 \rightarrow B_a B_b$
- $B \rightarrow AB_c$
- $B_a \rightarrow a$
- $B_b \rightarrow b$
- $B_c \rightarrow c$

- Any CFG can be converted to CNF
 - Example

 $\bigstar S \to aSb \mid \lambda$

- Any CFG can be converted to CNF
 - Example

 $\bigstar S \to aSb \mid \lambda$

$$\begin{array}{l} S' \to S \\ S \to aSb \mid \lambda \end{array}$$

- Any CFG can be converted to CNF
 - Example

 $\bigstar S \to aSb \mid \lambda$

- Any CFG can be converted to CNF
 - Example

 $\clubsuit S \rightarrow aSb \mid \lambda$

- Any CFG can be converted to CNF
 - Example

 $\clubsuit S \rightarrow aSb \mid \lambda$

- Any CFG can be converted to CNF
 - Example

 $\clubsuit S \rightarrow aSb \mid \lambda$

Greibach Normal Forms

Definition

- Restrict not the length of a production, but the **positions**
- A CFG (V, T, S, P) is in Greibach normal form if all Ps are of the form

 $A \rightarrow ax \ (a \in \Sigma \text{ and } x \in V^*)$

Conversion is not always a simple matter.

Greibach Normal Forms

Definition

Example

- $\clubsuit S \to AB$
- $A \rightarrow aA \mid bB \mid b$
- $\clubsuit B \rightarrow b$

Greibach Normal Forms

Definition

Example

- $\clubsuit S \to AB$
- $A \rightarrow aA \mid bB \mid b$
- $\clubsuit B \rightarrow b$
- This CFG can be converted to GNF as follows
 - $S \rightarrow aAB \mid bBB \mid bB$ $A \rightarrow aA \mid bB \mid b$

 - $\clubsuit B \rightarrow b$

Next Lecture

• A membership algorithm for CFG