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Deterministic Pushdown Automata

• Deterministic Pushdown Automata

▪ A pushdown automaton that never has a choice in its move
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Deterministic Pushdown Automata

• (Deterministic) Pushdown Automata: Formal definition

▪ A pushdown automaton (PDA) is a 7-tuple: 𝑴 = (𝑸, 𝚺, 𝜞, 𝜹, 𝒒𝟎, 𝒛, 𝑭)

❖ 𝑄 is a finite set of internal states

❖ Σ is a finite set of symbols

❖ Γ is a finite set of symbols called stack alphabets

❖ 𝛿 is a set of transition functions

• 𝛿: 𝑄 × Σ ∪ 𝜆 × Γ → 2(𝑄×Γ
∗)

• 𝛿 𝑞, 𝑎, 𝑏 contains at most one element (𝑞 ∈ 𝑄, 𝑎 ∈ Σ ∪ 𝜆 , 𝑏 ∈ Γ)

• If 𝛿 𝑞, 𝜆, 𝑏 is not empty, then 𝛿 𝑞, 𝑐, 𝑏 must be empty for every 𝑐 ∈ Σ

❖ 𝑞0 ∈ 𝑄 is the initial state

❖ 𝑧 ∈ Γ is the initial stack alphabet 

❖ 𝐹 ⊆ 𝑄 is a set of final states
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For any given input symbol and any stack top, at most one move can be made
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When a 𝜆-move is possible for some configuration, no input-consuming alternatives is available 



Deterministic Pushdown Automata

• Difference between finite automata

▪ DFA

❖ No 𝜆-transition is allowed 

❖ No dead configuration

❖ A DFA is equivalent in expressive power to an NFA

▪ DPDA

❖ 𝜆-transition is possible

• The top of the stack plays a role in determining the next move

• The presence of 𝜆-transition does not imply nondeterminism

❖ Some transitions of a DPDA may be to the empty set

• Dead configuration may occur

• The only criterion for determinism is that at all times at most one possible move exists

❖ DPDA and NPDA may not be equivalent 
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Deterministic Pushdown Automata

• A language 𝑳 is said to be a deterministic context-free language 

if and only if there exists a DPDA 𝑴 such that 𝑳 = 𝑳 𝑴
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Deterministic Pushdown Automata

• DPDA: example

▪ 𝑳 = 𝒂𝒏𝒃𝒏 𝒏 ≥ 𝟎}

▪ 𝑀 = ( 𝑞0, 𝑞1, 𝑞2 , 𝑎, 𝑏 , 0, 1 , 𝛿, 𝑞0, 𝑧, {𝑞0})

❖ 𝛿 𝑞0, 𝑎, 𝑧 = { 𝑞1, 1𝑧 }

❖ 𝛿 𝑞1, 𝑎, 1 = { 𝑞1, 11 }

❖ 𝛿 𝑞1, 𝑏, 1 = { 𝑞2, 𝜆 }

❖ 𝛿 𝑞2, 𝑏, 1 = { 𝑞2, 𝜆 }

❖ 𝛿 𝑞2, 𝜆, 𝑧 = { 𝑞0, 𝜆 }
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𝑞0 𝑞1 𝑞2
𝑎, 𝑧 → 1𝑧

𝑎, 1 → 11

𝑏, 1 → 𝜆

𝑏, 1 → 𝜆

𝜆, 𝑧 → 𝜆



Deterministic Pushdown Automata

• DPDA: example

▪ 𝑳 = 𝒂𝒏𝒃𝒏 𝒏 ≥ 𝟎}

▪ 𝑀 = ( 𝑞0, 𝑞1, 𝑞2 , 𝑎, 𝑏 , 0, 1 , 𝛿, 𝑞0, 𝑧, {𝑞0})

❖ 𝛿 𝑞0, 𝑎, 𝑧 = { 𝑞1, 1𝑧 }

❖ 𝛿 𝑞1, 𝑎, 1 = { 𝑞1, 11 }

❖ 𝛿 𝑞1, 𝑏, 1 = { 𝑞2, 𝜆 }

❖ 𝛿 𝑞2, 𝑏, 1 = { 𝑞2, 𝜆 }

❖ 𝛿 𝑞2, 𝜆, 𝑧 = { 𝑞0, 𝜆 }
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𝑞0 𝑞1 𝑞2
𝑎, 𝑧 → 1𝑧

𝑎, 1 → 11

𝑏, 1 → 𝜆

𝑏, 1 → 𝜆

𝜆, 𝑧 → 𝜆
• 𝛿 𝑞, 𝑎, 𝑏 contains at most one element (𝑞 ∈ 𝑄, 𝑎 ∈ Σ ∪ 𝜆 , 𝑏 ∈ Γ)

• If 𝛿 𝑞, 𝜆, 𝑏 is not empty, then 𝛿 𝑞, 𝑐, 𝑏 must be empty for every 𝑐 ∈ Σ



Deterministic Pushdown Automata

• DPDA: example
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Deterministic Pushdown Automata

• DPDA: example
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• If 𝛿 𝑞, 𝜆, 𝑏 is not empty, 

then 𝛿 𝑞, 𝑐, 𝑏 must be empty 

for every 𝑐 ∈ Σ

• 𝛿 𝑞0, 𝑎, 𝑎 = { 𝑞0, 𝑎𝑎 }
• 𝛿 𝑞0, 𝜆, 𝑎 = { 𝑞1, 𝑎 }

This example is 

not DPDA!



Deterministic Pushdown Automata

• However, this does not imply that 𝒘𝒘𝑹 is nondeterministic

▪ There may be a DPDA!
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Deterministic Pushdown Automata

• DPDA: practice

▪ 𝑳 = 𝒘𝒄𝒘𝑹 𝒘 ∈ 𝒂, 𝒃 +} (Γ = 𝟎, 𝟏, 𝒛 )
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• 𝛿 𝑞, 𝑎, 𝑏 contains at most one element (𝑞 ∈ 𝑄, 𝑎 ∈ Σ ∪ 𝜆 , 𝑏 ∈ Γ)

• If 𝛿 𝑞, 𝜆, 𝑏 is not empty, then 𝛿 𝑞, 𝑐, 𝑏 must be empty for every 𝑐 ∈ Σ



Deterministic Pushdown Automata

• DPDA: practice

▪ 𝑳 = 𝒘𝒄𝒘𝑹 𝒘 ∈ 𝒂, 𝒃 +}
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Parsing Efficiency

• The importance of deterministic CFL 

▪ They can be parsed efficiently

❖ Only one choice

• Assume that we derive the leftmost derivation of a sentence

▪ If we can determine which production rule to apply at each step, 

the efficiency of parsing becomes significantly higher
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Parsing Efficiency

• LL grammar

▪ Main characteristic

❖ By looking at a limited part of the input, we can predict which production rule must be used

▪ The first L indicates that the input is scanned from left to right

▪ The second L indicates that leftmost derivations are constructed
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Parsing Efficiency

• LL grammar: example

▪ 𝑆 → 𝑎𝑆𝑏 | 𝑎𝑏

Theory of Computation 18



Parsing Efficiency

• LL grammar: example

▪ 𝑆 → 𝑎𝑆𝑏 | 𝑎𝑏

▪ To determine which production rule to apply, examine the first two symbols of the 

given input string
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Parsing Efficiency

• LL grammar: example

▪ 𝑆 → 𝑎𝑆𝑏 | 𝑎𝑏

▪ To determine which production rule to apply, examine the first two symbols of the 

given input string

▪ If the second symbol is ‘𝑏,’ we should apply 𝑆 → 𝑎𝑏

▪ If the second symbol is ‘𝑎,’ we should apply 𝑆 → 𝑎𝑆𝑏
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Parsing Efficiency

• LL grammar: example

▪ 𝑆 → 𝑎𝑆𝑏 | 𝑎𝑏

𝒂𝒂𝒂𝒃𝒃𝒃
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𝑆 → 𝑎𝑆𝑏
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𝑆 → 𝑎𝑆𝑏



Parsing Efficiency

• LL grammar: example
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𝑆 → 𝑎𝑏



Parsing Efficiency

• LL grammar: example

▪ 𝑆 → 𝑎𝑆𝑏 | 𝑎𝑏

▪ 𝑆 ⇒ 𝑎𝑆𝑏 ⇒ 𝑎𝑎𝑆𝑏𝑏 ⇒ 𝑎𝑎𝑎𝑏𝑏𝑏
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Parsing Efficiency

• LL grammar: example

▪ 𝑆 → 𝑎𝑆𝑏 | 𝑎𝑏

▪ 𝑆 ⇒ 𝑎𝑆𝑏 ⇒ 𝑎𝑎𝑆𝑏𝑏 ⇒ 𝑎𝑎𝑎𝑏𝑏𝑏

▪ A grammar is an LL(k) grammar if we can uniquely identify the correct production,

given the currently scanned symbol and a “look ahead” of the next k-1 symbols

▪ This is an example of an LL(2) grammar
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Parsing Efficiency

• LL grammar: example

▪ 𝑆 → 𝑆𝑆 | 𝑎𝑆𝑏 | 𝑎𝑏

▪ Is this an LL grammar?
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Parsing Efficiency

• LL grammar: example

▪ 𝑆 → 𝑆𝑆 | 𝑎𝑆𝑏 | 𝑎𝑏

▪ Is this an LL grammar?

❖ NO!

▪ If the first symbol is ‘𝑎,’ we do not know which rule to be used, 𝑆 → 𝑆𝑆 or 𝑆 → 𝑎𝑆𝑏
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Parsing Efficiency

• LL grammar: example

▪ 𝑆 → 𝑆𝑆 | 𝑎𝑆𝑏 | 𝑎𝑏

▪ Is this an LL grammar?

❖ NO!

▪ If the first symbol is ‘𝑎,’ we do not know which rule to be used, 𝑆 → 𝑆𝑆 or 𝑆 → 𝑎𝑆𝑏

▪ Even if we look at first two symbols..

❖ 𝑎𝑎𝑏𝑏 𝑎𝑎𝑏𝑏𝑎𝑏

❖We do not know which rule to be used, 𝑆 → 𝑆𝑆 or 𝑆 → 𝑎𝑆𝑏
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Parsing Efficiency

• LL grammar: example

▪ 𝑆 → 𝑆𝑆 | 𝑎𝑆𝑏 | 𝑎𝑏

▪ Is this an LL grammar?

❖ NO!

▪ But we can generate an LL grammar equivalent to the original grammar

❖ 𝑆′ → 𝑎𝑆𝑏𝑆

❖ 𝑆 → 𝑎𝑆𝑏𝑆 | 𝜆
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Parsing Efficiency

• LL grammar: example

▪ 𝑆 → 𝑆𝑆 | 𝑎𝑆𝑏 | 𝑎𝑏

▪ Is this an LL grammar?

❖ NO!

▪ But we can generate an LL grammar equivalent to the original grammar

❖ 𝑆′ → 𝑎𝑆𝑏𝑆

❖ 𝑆 → 𝑎𝑆𝑏𝑆 | 𝜆

▪ More details about LL grammar will be introduced in the compiler class! (hopefully..)
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Next Lecture

• Properties of Context-free Languages
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