Lecture 7

Pushdown Automata
COSE215: Theory of Computation

Seunghoon Woo

Fall 2023

Theory of Computation 1

Contents

e Deterministic Pushdown Automata

Theory of Computation 2

Deterministic Pushdown Automata

e Deterministic Pushdown Automata

" A pushdown automaton that never has a choice in its move

Theory of Computation 3

Deterministic Pushdown Automata

* (Deterministic) Pushdown Automata: Formal definition
= A pushdown automaton (PDA) is a 7-tuple: M = (Q,X, T, 6, q, z, F)

s @ is a finite set of internal states
% X is a finite set of symbols
¢ T'is a finite set of symbols called stack alphabets
¢ 4 is a set of transition functions
¢« 5:0X (U} XT - 2@
* 6(q,a,b) contains at most one element (g € Q, a € XU {4}, b €T
« If 5(q, A, b) is not empty, then §(q, c, b) must be empty for every ¢ € X
* go € Q is the initial state
% z € I' is the initial stack alphabet

s F C Qis a set of final states

Theory of Computation 4

Deterministic Pushdown Automata

* (Deterministic) Pushdown Automata: Formal definition

For any given input symbol and any stack top, at most one move can be made

* 6(q,a,b) contains at most one element (g € Q, a € XU {4}, b €T

Theory of Computation 5

Deterministic Pushdown Automata

* (Deterministic) Pushdown Automata: Formal definition

« If 5(q, A, b) is not empty, then §(q, c, b) must be empty for every ¢ € X

Theory of Computation 6

Deterministic Pushdown Automata

 Difference between finite automata
= DFA

** No A-transition is allowed
J

¢ No dead configuration

¢ A DFA is equivalent in expressive power to an NFA

= DPDA
% A-transition is possible
* The top of the stack plays a role in determining the next move
* The presence of A-transition does not imply nondeterminism
% Some transitions of a DPDA may be to the empty set
* Dead configuration may occur

* The only criterion for determinism is that at all times at most one possible move exists

¢ DPDA and NPDA may not be equivalent

Theory of Computation 4

Deterministic Pushdown Automata

* A language L is said to be a deterministic context-free language
if and only if there exists a DPDA M such that L = L(M)

Theory of Computation 8

Deterministic Pushdown Automata

* DPDA: example
* L ={a"b" | n = 0}

* M = ({90, 91, 92}, {a, b},{0,1}, 8, 90, 2, {q0})

* 6(qo,a,2) = {(q1,12)}
’:’ 5(6]1,&, 1) — {(Chr 11)} a, 1 _) 11 b’ 1 - /1

% 6(q1,b,1) = {(q2, 1)}

% 6(q2,b,1) ={(g2, 1)} a,z— 1z b,1 - A
» 5((]2,1, Z) = {(QOJ)}

ALz—-o A

Theory of Computation 9

Deterministic Pushdown Automata

* DPDA: example
» L ={a"b"™ | n = 0}

* M = ({90, 91, 92}, {a, b},{0,1}, 8, 90, 2, {q0})

’:’ 5(610:61» Z) — {(Ch! 12)}
® 8(qua 1) = {(q1, 11} a,1-11 b,1->4

% 6(q1,b,1) = {(q2, D} m

% 3(q2,b,1) = {(g, 1)} a.z - 1z b1- A1
> 5((]2,1, Z) — {(QOJ)} @

* 6(q,a,b) contains at most one element (g € Q, a € XU {A}, b €) 17—
* 1f 6(q, A, b) is not empty, then 6(q, ¢, b) must be empty for every c € X »Z

Theory of Computation 10

Deterministic Pushdown Automata

* DPDA: example

Pushdown Automata

 Another example: Design a PDA for L = {ww®:w € {a, b}"}
"M = (190, 91,92}, 1@, b}, {a, b, 2}, 0, o, 2, {q2})

a,z— az
b,z = bz

a,a— aa

b,a = ba

a,b - ab aa— A
b,b = bb b,b - A

() (3

Aa-a
ALb-b Az-oz

Theory of Computation 11

Deterministic Pushdown Automata

* DPDA: example

Pushdown Automata

 Another example: Design a PDA for L = {ww®:w € {a, b}"}
"M = (190, 91,92}, 1@, b}, {a, b, 2}, 0, o, 2, {q2})

* If6(q, A, b) is not empty,
then 6(q, ¢, b) must be empty

;Z = bz for every c € X

a,a— aa

ba—b _

a.,g : ag aa— A * 5(610, a, a) — {(qOr aa)}
b, b — bb b,b - 2 * 6(qo, 4 a) ={(qy,a)}

m Aa-a m |
_,. 2o, hee This example is
not DPDA!

Theory of Computation 12

Deterministic Pushdown Automata

« However, this does not imply that {ww?®} is nondeterministic
" There may be a DPDA!

Theory of Computation 13

Deterministic Pushdown Automata

* DPDA: practice
“L={wewR |we{ab}*} (={012})

* 6(q,a,b) contains at most one element (g € Q, a € XU {A}, b €)
* 1f§(q, A, b) is not empty, then 6(q, ¢, b) must be empty for every c € X

Theory of Computation 14

Deterministic Pushdown Automata

* DPDA: practice

= L = {wewR |w € {a, b}*}

Theory of Computation 15

Parsing Efficiency

* The importance of deterministic CFL

" They can be parsed efficiently

“* Only one choice

e Assume that we derive the leftmost derivation of a sentence

" |f we can determine which production rule to apply at each step,

the efficiency of parsing becomes significantly higher

Theory of Computation 16

Parsing Efficiency

* LL grammar

= Main characteristic

“* By looking at a limited part of the input, we can predict which production rule must be used
" The first L indicates that the input is scanned from left to right

= The second L indicates that leftmost derivations are constructed

Theory of Computation 17

Parsing Efficiency

* LL grammar: example
" S —>aSb|ab

Theory of Computation 18

Parsing Efficiency

* LL grammar: example
" S —>aSb|ab

" To determine which production rule to apply, examine the first two symbols of the

given input string

Theory of Computation 19

Parsing Efficiency

* LL grammar: example
" S —>aSb|ab
" To determine which production rule to apply, examine the first two symbols of the
given input string
= |f the second symbol is ‘b, we should apply S — ab

= |f the second symbol is ‘a, we should apply S = aSb

Theory of Computation 20

Parsing Efficiency

* LL grammar: example
" S —>aSb|ab

aaabbb

Theory of Computation 21

Parsing Efficiency

* LL grammar: example
" S —>aSb|ab

aaabbb

S - aSh

Theory of Computation 22

Parsing Efficiency

* LL grammar: example
" S —>aSb|ab

aaabbb

S - aSh

Theory of Computation 23

Parsing Efficiency

* LL grammar: example
" S —>aSb|ab

aaabbb

S - ab

Theory of Computation 24

Parsing Efficiency

* LL grammar: example
" S —>aSb|ab
" S = aSb = aaSbb = aaabbb

Theory of Computation 25

Parsing Efficiency

* LL grammar: example
" S —>aSb|ab
" S = aSb = aaSbb = aaabbb

" A grammar is an LL(k) grammar if we can uniquely identify the correct production,

given the currently scanned symbol and a “look ahead” of the next k-1 symbols

" This is an example of an LL(2) grammar

Theory of Computation 26

Parsing Efficiency

* LL grammar: example
"S> 55|aSb|ab

" |s this an LL grammar?

Theory of Computation 27

Parsing Efficiency

* LL grammar: example
"S> 55|aSb|ab

" |s this an LL grammar?
* NO!

= |f the first symbol is ‘a, we do not know which rule to be used,S — SSor § — aSb

Theory of Computation 28

Parsing Efficiency

* LL grammar: example
"S> 55|aSb|ab
" |s this an LL grammar?
* NO!
= |f the first symbol is ‘a, we do not know which rule to be used,S — SSor § — aSb

" Even if we look at first two symbols..
s aabb aabbab

** We do not know which rule to be used, S - SSor S —» aSh

Theory of Computation 29

Parsing Efficiency

* LL grammar: example
"S> 55|aSb|ab
" |s this an LL grammar?
* NO!
" But we can generate an LL grammar equivalent to the original grammar
% S"—> aShS
% S > aShS |2

Theory of Computation 30

Parsing Efficiency

* LL grammar: example
"S> 55|aSb|ab
" |s this an LL grammar?
* NO!
" But we can generate an LL grammar equivalent to the original grammar
% S"—> aShS
% S > aShS |2

" More details about LL grammar will be introduced in the compiler class! (hopefully..)

Theory of Computation 31

Next Lecture

* Properties of Context-free Languages

Theory of Computation 32

