Lecture 7 Pushdown Automata

COSE215: Theory of Computation

Seunghoon Woo

Fall 2023

Contents

Deterministic Pushdown Automata

Deterministic Pushdown Automata

A pushdown automaton that never has a choice in its move

• (Deterministic) Pushdown Automata: Formal definition

- A pushdown automaton (PDA) is a 7-tuple: $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$
 - \clubsuit Q is a finite set of **internal states**
 - * Σ is a finite set of **symbols**
 - \clubsuit Γ is a finite set of symbols called stack alphabets
 - * δ is a set of transition functions
 - $\delta: Q \times (\Sigma \cup \{\lambda\}) \times \Gamma \to 2^{(Q \times \Gamma^*)}$
 - $\delta(q, a, b)$ contains at most one element $(q \in Q, a \in \Sigma \cup \{\lambda\}, b \in \Gamma)$
 - If $\delta(q, \lambda, b)$ is not empty, then $\delta(q, c, b)$ must be empty for every $c \in \Sigma$
 - ✤ $q_0 \in Q$ is the initial state
 - ★ *z* ∈ Γ is the initial stack alphabet
 - $\clubsuit F \subseteq Q \text{ is a set of final states}$

• (Deterministic) Pushdown Automata: Formal definition

- A pushdown automaton (PDA) is a 7-tuple: $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$
 - \clubsuit Q is a finite set of **internal states**
 - **\bigstar** Σ is a finite set of **symbols**
 - * Γ is a finite set of symbols called stack alphabets
 - * δ is a set of **transition functions**

For any given input symbol and any stack top, at most one move can be made

- $\delta(q, a, b)$ contains at most one element $(q \in Q, a \in \Sigma \cup \{\lambda\}, b \in \Gamma)$
- If $\delta(q, \lambda, b)$ is not empty, then $\delta(q, c, b)$ must be empty for every $c \in \Sigma$
- ✤ $q_0 \in Q$ is the initial state
- * $z \in \Gamma$ is the initial stack alphabet
- $\clubsuit F \subseteq Q \text{ is a set of final states}$

• (Deterministic) Pushdown Automata: Formal definition

- A pushdown automaton (PDA) is a 7-tuple: $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$
 - \clubsuit Q is a finite set of **internal states**
 - * Σ is a finite set of **symbols**
 - * Γ is a finite set of **symbols called stack alphabets**
 - * δ is a set of **transition functions**

 $-\mathcal{S} \cdot \mathcal{O} \times (\Sigma \sqcup \{\lambda\}) \times \Gamma \longrightarrow \mathcal{O}(\mathcal{Q} \times \Gamma^*)$

When a λ -move is possible for some configuration, no input-consuming alternatives is available

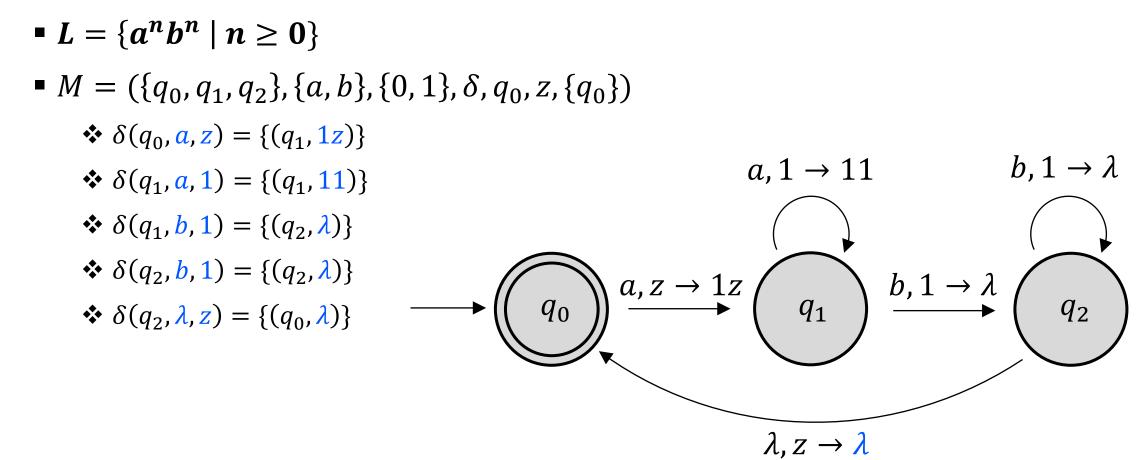
- If $\delta(q, \lambda, b)$ is not empty, then $\delta(q, c, b)$ must be empty for every $c \in \Sigma$
- ✤ $q_0 \in Q$ is the initial state
- * $z \in \Gamma$ is the initial stack alphabet
- $\clubsuit F \subseteq Q \text{ is a set of final states}$

Difference between finite automata

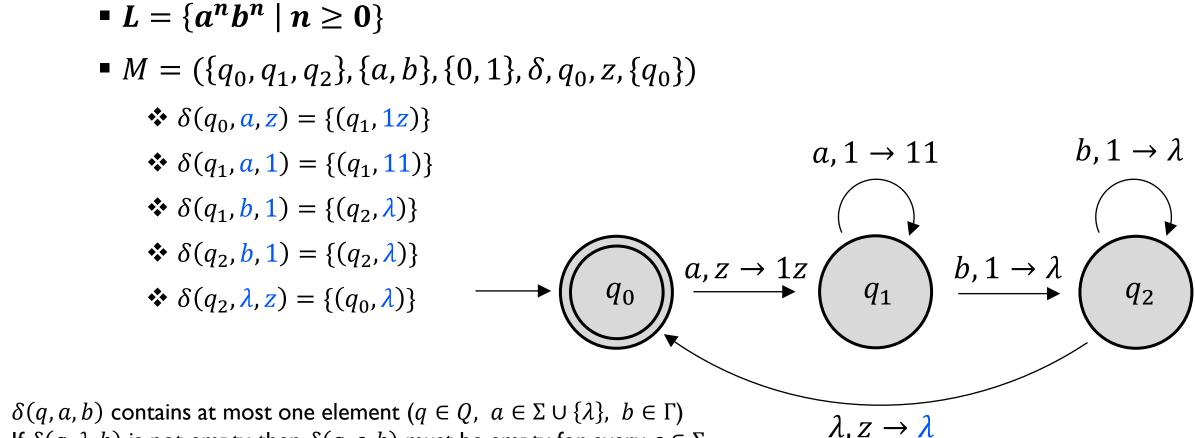
- DFA
 - * No λ -transition is allowed
 - ✤ No dead configuration
 - ✤ A DFA is equivalent in expressive power to an NFA
- DPDA
 - * λ -transition is possible
 - The top of the stack plays a role in determining the next move
 - The presence of λ -transition does not imply nondeterminism
 - Some transitions of a DPDA may be to the empty set
 - Dead configuration may occur
 - The only criterion for determinism is that at all times at most one possible move exists
 - DPDA and NPDA may not be equivalent

• A language L is said to be a deterministic context-free language if and only if there exists a DPDA M such that L = L(M)

• DPDA: example



• DPDA: example



• If $\delta(q, \lambda, b)$ is not empty, then $\delta(q, c, b)$ must be empty for every $c \in \Sigma$

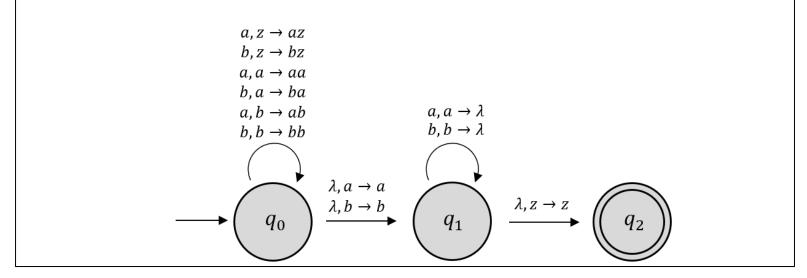
Theory of Computation

• DPDA: example

Pushdown Automata

• Another example: Design a PDA for $L = \{ww^R : w \in \{a, b\}^*\}$

• $M = (\{q_0, q_1, q_2\}, \{a, b\}, \{a, b, z\}, \delta, q_0, z, \{q_2\})$



• DPDA: example

Pushdown Automata

 $a, a \rightarrow \lambda$

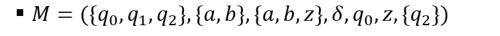
 $b, b \rightarrow \lambda$

 q_1

 $\lambda, z \rightarrow z$

 q_2

• Another example: Design a PDA for $L = \{ww^R : w \in \{a, b\}^*\}$



 $\lambda, a \rightarrow a$

 $\lambda, b \rightarrow b$

 $a, z \rightarrow az$

 $b, z \rightarrow bz$ $a, a \rightarrow aa$ $b, a \rightarrow ba$

 $a, b \rightarrow ab$

 $b, b \rightarrow bb$

 q_0

• If $\delta(q, \lambda, b)$ is not empty, then $\delta(q, c, b)$ must be empty for every $c \in \Sigma$

•
$$\delta(q_0, a, a) = \{(q_0, aa)\}$$

• $\delta(q_0, \lambda, a) = \{(q_1, a)\}$

This example is not DPDA!

- However, this does not imply that $\{ww^R\}$ is nondeterministic
 - There may be a DPDA!

DPDA: practice

•
$$L = \{wcw^R \mid w \in \{a, b\}^+\}$$
 $(\Gamma = \{0, 1, z\})$

- $\delta(q, a, b)$ contains at most one element $(q \in Q, a \in \Sigma \cup \{\lambda\}, b \in \Gamma)$
- If $\delta(q, \lambda, b)$ is not empty, then $\delta(q, c, b)$ must be empty for every $c \in \Sigma$

Theory of Computation

- DPDA: practice
 - $L = \{wcw^R \mid w \in \{a, b\}^+\}$

• The importance of deterministic CFL

- They can be parsed efficiently
 - Only one choice

• Assume that we derive the leftmost derivation of a sentence

 If we can determine which production rule to apply at each step, the efficiency of parsing becomes significantly higher

• LL grammar

- Main characteristic
 - * By looking at a limited part of the input, we can predict which production rule must be used
- The first L indicates that the input is scanned from left to right
- The second L indicates that leftmost derivations are constructed

- LL grammar: example
 - $S \rightarrow aSb \mid ab$

• LL grammar: example

- $\bullet S \to aSb \mid ab$
- To determine which production rule to apply, examine the first two symbols of the given input string

• LL grammar: example

- $S \rightarrow aSb \mid ab$
- To determine which production rule to apply, examine the first two symbols of the given input string
- If the second symbol is 'b,' we should apply $S \rightarrow ab$
- If the second symbol is 'a,' we should apply $S \rightarrow aSb$

- LL grammar: example
 - $S \rightarrow aSb \mid ab$

aaabbb

- LL grammar: example
 - $S \rightarrow aSb \mid ab$

aaabbb

$$S \rightarrow aSb$$

- LL grammar: example
 - $S \rightarrow aSb \mid ab$

<u>aaabbb</u>

 $S \rightarrow aSb$

- LL grammar: example
 - $S \rightarrow aSb \mid ab$

aaabbb

 $S \rightarrow ab$

• LL grammar: example

- $S \rightarrow aSb \mid ab$
- $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaabbb$

• LL grammar: example

- $S \rightarrow aSb \mid ab$
- $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaabbb$
- A grammar is an LL(k) grammar if we can uniquely identify the correct production, given the currently scanned symbol and a "look ahead" of the next k-I symbols
- This is an example of an LL(2) grammar

- LL grammar: example
 - $S \rightarrow SS \mid aSb \mid ab$
 - Is this an LL grammar?

• LL grammar: example

- $S \rightarrow SS \mid aSb \mid ab$
- Is this an LL grammar?

* NO!

• If the first symbol is 'a,' we do not know which rule to be used, $S \rightarrow SS$ or $S \rightarrow aSb$

• LL grammar: example

- $S \rightarrow SS \mid aSb \mid ab$
- Is this an LL grammar?

* NO!

- If the first symbol is 'a,' we do not know which rule to be used, $S \rightarrow SS$ or $S \rightarrow aSb$
- Even if we look at first two symbols..
 - ✤ aabb aabbab

♦ We do not know which rule to be used, $S \rightarrow SS$ or $S \rightarrow aSb$

• LL grammar: example

- $S \rightarrow SS \mid aSb \mid ab$
- Is this an LL grammar?

* NO!

- But we can generate an LL grammar equivalent to the original grammar
 - $\clubsuit S' \rightarrow aSbS$
 - $\bigstar S \to aSbS \mid \lambda$

• LL grammar: example

- $S \rightarrow SS \mid aSb \mid ab$
- Is this an LL grammar?

* NO!

- But we can generate an LL grammar equivalent to the original grammar
 - $\clubsuit S' \rightarrow aSbS$
 - $\clubsuit S \to aSbS \mid \lambda$
- More details about LL grammar will be introduced in the compiler class! (hopefully..)

Next Lecture

• Properties of Context-free Languages