
COSE215: Theory of Computation

Seunghoon Woo

Fall 2023

1Theory of Computation

Lecture 7

Pushdown Automata

Contents

• Deterministic Pushdown Automata

Theory of Computation 2

Deterministic Pushdown Automata

• Deterministic Pushdown Automata

▪ A pushdown automaton that never has a choice in its move

Theory of Computation 3

Deterministic Pushdown Automata

• (Deterministic) Pushdown Automata: Formal definition

▪ A pushdown automaton (PDA) is a 7-tuple: 𝑴 = (𝑸, 𝚺, 𝜞, 𝜹, 𝒒𝟎, 𝒛, 𝑭)

❖ 𝑄 is a finite set of internal states

❖ Σ is a finite set of symbols

❖ Γ is a finite set of symbols called stack alphabets

❖ 𝛿 is a set of transition functions

• 𝛿: 𝑄 × Σ ∪ 𝜆 × Γ → 2(𝑄×Γ
∗)

• 𝛿 𝑞, 𝑎, 𝑏 contains at most one element (𝑞 ∈ 𝑄, 𝑎 ∈ Σ ∪ 𝜆 , 𝑏 ∈ Γ)

• If 𝛿 𝑞, 𝜆, 𝑏 is not empty, then 𝛿 𝑞, 𝑐, 𝑏 must be empty for every 𝑐 ∈ Σ

❖ 𝑞0 ∈ 𝑄 is the initial state

❖ 𝑧 ∈ Γ is the initial stack alphabet

❖ 𝐹 ⊆ 𝑄 is a set of final states

Theory of Computation 4

Deterministic Pushdown Automata

• (Deterministic) Pushdown Automata: Formal definition

▪ A pushdown automaton (PDA) is a 7-tuple: 𝑴 = (𝑸, 𝚺, 𝜞, 𝜹, 𝒒𝟎, 𝒛, 𝑭)

❖ 𝑄 is a finite set of internal states

❖ Σ is a finite set of symbols

❖ Γ is a finite set of symbols called stack alphabets

❖ 𝛿 is a set of transition functions

• 𝛿: 𝑄 × Σ ∪ 𝜆 × Γ → 2(𝑄×Γ
∗)

• 𝛿 𝑞, 𝑎, 𝑏 contains at most one element (𝑞 ∈ 𝑄, 𝑎 ∈ Σ ∪ 𝜆 , 𝑏 ∈ Γ)

• If 𝛿 𝑞, 𝜆, 𝑏 is not empty, then 𝛿 𝑞, 𝑐, 𝑏 must be empty for every 𝑐 ∈ Σ

❖ 𝑞0 ∈ 𝑄 is the initial state

❖ 𝑧 ∈ Γ is the initial stack alphabet

❖ 𝐹 ⊆ 𝑄 is a set of final states

Theory of Computation 5

For any given input symbol and any stack top, at most one move can be made

Deterministic Pushdown Automata

• (Deterministic) Pushdown Automata: Formal definition

▪ A pushdown automaton (PDA) is a 7-tuple: 𝑴 = (𝑸, 𝚺, 𝜞, 𝜹, 𝒒𝟎, 𝒛, 𝑭)

❖ 𝑄 is a finite set of internal states

❖ Σ is a finite set of symbols

❖ Γ is a finite set of symbols called stack alphabets

❖ 𝛿 is a set of transition functions

• 𝛿: 𝑄 × Σ ∪ 𝜆 × Γ → 2(𝑄×Γ
∗)

• 𝛿 𝑞, 𝑎, 𝑏 contains at most one element (𝑞 ∈ 𝑄, 𝑎 ∈ Σ ∪ 𝜆 , 𝑏 ∈ Γ)

• If 𝛿 𝑞, 𝜆, 𝑏 is not empty, then 𝛿 𝑞, 𝑐, 𝑏 must be empty for every 𝑐 ∈ Σ

❖ 𝑞0 ∈ 𝑄 is the initial state

❖ 𝑧 ∈ Γ is the initial stack alphabet

❖ 𝐹 ⊆ 𝑄 is a set of final states

Theory of Computation 6

When a 𝜆-move is possible for some configuration, no input-consuming alternatives is available

Deterministic Pushdown Automata

• Difference between finite automata

▪ DFA

❖ No 𝜆-transition is allowed

❖ No dead configuration

❖ A DFA is equivalent in expressive power to an NFA

▪ DPDA

❖ 𝜆-transition is possible

• The top of the stack plays a role in determining the next move

• The presence of 𝜆-transition does not imply nondeterminism

❖ Some transitions of a DPDA may be to the empty set

• Dead configuration may occur

• The only criterion for determinism is that at all times at most one possible move exists

❖ DPDA and NPDA may not be equivalent

Theory of Computation 7

Deterministic Pushdown Automata

• A language 𝑳 is said to be a deterministic context-free language

if and only if there exists a DPDA 𝑴 such that 𝑳 = 𝑳 𝑴

Theory of Computation 8

Deterministic Pushdown Automata

• DPDA: example

▪ 𝑳 = 𝒂𝒏𝒃𝒏 𝒏 ≥ 𝟎}

▪ 𝑀 = (𝑞0, 𝑞1, 𝑞2 , 𝑎, 𝑏 , 0, 1 , 𝛿, 𝑞0, 𝑧, {𝑞0})

❖ 𝛿 𝑞0, 𝑎, 𝑧 = { 𝑞1, 1𝑧 }

❖ 𝛿 𝑞1, 𝑎, 1 = { 𝑞1, 11 }

❖ 𝛿 𝑞1, 𝑏, 1 = { 𝑞2, 𝜆 }

❖ 𝛿 𝑞2, 𝑏, 1 = { 𝑞2, 𝜆 }

❖ 𝛿 𝑞2, 𝜆, 𝑧 = { 𝑞0, 𝜆 }

Theory of Computation 9

𝑞0 𝑞1 𝑞2
𝑎, 𝑧 → 1𝑧

𝑎, 1 → 11

𝑏, 1 → 𝜆

𝑏, 1 → 𝜆

𝜆, 𝑧 → 𝜆

Deterministic Pushdown Automata

• DPDA: example

▪ 𝑳 = 𝒂𝒏𝒃𝒏 𝒏 ≥ 𝟎}

▪ 𝑀 = (𝑞0, 𝑞1, 𝑞2 , 𝑎, 𝑏 , 0, 1 , 𝛿, 𝑞0, 𝑧, {𝑞0})

❖ 𝛿 𝑞0, 𝑎, 𝑧 = { 𝑞1, 1𝑧 }

❖ 𝛿 𝑞1, 𝑎, 1 = { 𝑞1, 11 }

❖ 𝛿 𝑞1, 𝑏, 1 = { 𝑞2, 𝜆 }

❖ 𝛿 𝑞2, 𝑏, 1 = { 𝑞2, 𝜆 }

❖ 𝛿 𝑞2, 𝜆, 𝑧 = { 𝑞0, 𝜆 }

Theory of Computation 10

𝑞0 𝑞1 𝑞2
𝑎, 𝑧 → 1𝑧

𝑎, 1 → 11

𝑏, 1 → 𝜆

𝑏, 1 → 𝜆

𝜆, 𝑧 → 𝜆
• 𝛿 𝑞, 𝑎, 𝑏 contains at most one element (𝑞 ∈ 𝑄, 𝑎 ∈ Σ ∪ 𝜆 , 𝑏 ∈ Γ)

• If 𝛿 𝑞, 𝜆, 𝑏 is not empty, then 𝛿 𝑞, 𝑐, 𝑏 must be empty for every 𝑐 ∈ Σ

Deterministic Pushdown Automata

• DPDA: example

Theory of Computation 11

Deterministic Pushdown Automata

• DPDA: example

Theory of Computation 12

• If 𝛿 𝑞, 𝜆, 𝑏 is not empty,

then 𝛿 𝑞, 𝑐, 𝑏 must be empty

for every 𝑐 ∈ Σ

• 𝛿 𝑞0, 𝑎, 𝑎 = { 𝑞0, 𝑎𝑎 }
• 𝛿 𝑞0, 𝜆, 𝑎 = { 𝑞1, 𝑎 }

This example is

not DPDA!

Deterministic Pushdown Automata

• However, this does not imply that 𝒘𝒘𝑹 is nondeterministic

▪ There may be a DPDA!

Theory of Computation 13

Deterministic Pushdown Automata

• DPDA: practice

▪ 𝑳 = 𝒘𝒄𝒘𝑹 𝒘 ∈ 𝒂, 𝒃 +} (Γ = 𝟎, 𝟏, 𝒛)

Theory of Computation 14

• 𝛿 𝑞, 𝑎, 𝑏 contains at most one element (𝑞 ∈ 𝑄, 𝑎 ∈ Σ ∪ 𝜆 , 𝑏 ∈ Γ)

• If 𝛿 𝑞, 𝜆, 𝑏 is not empty, then 𝛿 𝑞, 𝑐, 𝑏 must be empty for every 𝑐 ∈ Σ

Deterministic Pushdown Automata

• DPDA: practice

▪ 𝑳 = 𝒘𝒄𝒘𝑹 𝒘 ∈ 𝒂, 𝒃 +}

Theory of Computation 15

Parsing Efficiency

• The importance of deterministic CFL

▪ They can be parsed efficiently

❖ Only one choice

• Assume that we derive the leftmost derivation of a sentence

▪ If we can determine which production rule to apply at each step,

the efficiency of parsing becomes significantly higher

Theory of Computation 16

Parsing Efficiency

• LL grammar

▪ Main characteristic

❖ By looking at a limited part of the input, we can predict which production rule must be used

▪ The first L indicates that the input is scanned from left to right

▪ The second L indicates that leftmost derivations are constructed

Theory of Computation 17

Parsing Efficiency

• LL grammar: example

▪ 𝑆 → 𝑎𝑆𝑏 | 𝑎𝑏

Theory of Computation 18

Parsing Efficiency

• LL grammar: example

▪ 𝑆 → 𝑎𝑆𝑏 | 𝑎𝑏

▪ To determine which production rule to apply, examine the first two symbols of the

given input string

Theory of Computation 19

Parsing Efficiency

• LL grammar: example

▪ 𝑆 → 𝑎𝑆𝑏 | 𝑎𝑏

▪ To determine which production rule to apply, examine the first two symbols of the

given input string

▪ If the second symbol is ‘𝑏,’ we should apply 𝑆 → 𝑎𝑏

▪ If the second symbol is ‘𝑎,’ we should apply 𝑆 → 𝑎𝑆𝑏

Theory of Computation 20

Parsing Efficiency

• LL grammar: example

▪ 𝑆 → 𝑎𝑆𝑏 | 𝑎𝑏

𝒂𝒂𝒂𝒃𝒃𝒃

Theory of Computation 21

Parsing Efficiency

• LL grammar: example

▪ 𝑆 → 𝑎𝑆𝑏 | 𝑎𝑏

𝒂𝒂𝒂𝒃𝒃𝒃

Theory of Computation 22

𝑆 → 𝑎𝑆𝑏

Parsing Efficiency

• LL grammar: example

▪ 𝑆 → 𝑎𝑆𝑏 | 𝑎𝑏

𝒂𝒂𝒂𝒃𝒃𝒃

Theory of Computation 23

𝑆 → 𝑎𝑆𝑏

Parsing Efficiency

• LL grammar: example

▪ 𝑆 → 𝑎𝑆𝑏 | 𝑎𝑏

𝒂𝒂𝒂𝒃𝒃𝒃

Theory of Computation 24

𝑆 → 𝑎𝑏

Parsing Efficiency

• LL grammar: example

▪ 𝑆 → 𝑎𝑆𝑏 | 𝑎𝑏

▪ 𝑆 ⇒ 𝑎𝑆𝑏 ⇒ 𝑎𝑎𝑆𝑏𝑏 ⇒ 𝑎𝑎𝑎𝑏𝑏𝑏

Theory of Computation 25

Parsing Efficiency

• LL grammar: example

▪ 𝑆 → 𝑎𝑆𝑏 | 𝑎𝑏

▪ 𝑆 ⇒ 𝑎𝑆𝑏 ⇒ 𝑎𝑎𝑆𝑏𝑏 ⇒ 𝑎𝑎𝑎𝑏𝑏𝑏

▪ A grammar is an LL(k) grammar if we can uniquely identify the correct production,

given the currently scanned symbol and a “look ahead” of the next k-1 symbols

▪ This is an example of an LL(2) grammar

Theory of Computation 26

Parsing Efficiency

• LL grammar: example

▪ 𝑆 → 𝑆𝑆 | 𝑎𝑆𝑏 | 𝑎𝑏

▪ Is this an LL grammar?

Theory of Computation 27

Parsing Efficiency

• LL grammar: example

▪ 𝑆 → 𝑆𝑆 | 𝑎𝑆𝑏 | 𝑎𝑏

▪ Is this an LL grammar?

❖ NO!

▪ If the first symbol is ‘𝑎,’ we do not know which rule to be used, 𝑆 → 𝑆𝑆 or 𝑆 → 𝑎𝑆𝑏

Theory of Computation 28

Parsing Efficiency

• LL grammar: example

▪ 𝑆 → 𝑆𝑆 | 𝑎𝑆𝑏 | 𝑎𝑏

▪ Is this an LL grammar?

❖ NO!

▪ If the first symbol is ‘𝑎,’ we do not know which rule to be used, 𝑆 → 𝑆𝑆 or 𝑆 → 𝑎𝑆𝑏

▪ Even if we look at first two symbols..

❖ 𝑎𝑎𝑏𝑏 𝑎𝑎𝑏𝑏𝑎𝑏

❖We do not know which rule to be used, 𝑆 → 𝑆𝑆 or 𝑆 → 𝑎𝑆𝑏

Theory of Computation 29

Parsing Efficiency

• LL grammar: example

▪ 𝑆 → 𝑆𝑆 | 𝑎𝑆𝑏 | 𝑎𝑏

▪ Is this an LL grammar?

❖ NO!

▪ But we can generate an LL grammar equivalent to the original grammar

❖ 𝑆′ → 𝑎𝑆𝑏𝑆

❖ 𝑆 → 𝑎𝑆𝑏𝑆 | 𝜆

Theory of Computation 30

Parsing Efficiency

• LL grammar: example

▪ 𝑆 → 𝑆𝑆 | 𝑎𝑆𝑏 | 𝑎𝑏

▪ Is this an LL grammar?

❖ NO!

▪ But we can generate an LL grammar equivalent to the original grammar

❖ 𝑆′ → 𝑎𝑆𝑏𝑆

❖ 𝑆 → 𝑎𝑆𝑏𝑆 | 𝜆

▪ More details about LL grammar will be introduced in the compiler class! (hopefully..)

Theory of Computation 31

Next Lecture

• Properties of Context-free Languages

Theory of Computation 32

