Lecture 8 Properties of Context-free Languages

COSE215: Theory of Computation

Seunghoon Woo

Fall 2023

Contents

• Pumping lemma for context-free languages

• Revisit: pumping lemma for regular languages

Identifying non-regular languages

Pumping lemma

- Let L be a regular language
- There exists a positive integer m such that any $w \in L$, if $|w| \ge m$, there exists
 - w = xyz such that
 - $\bigstar |xy| \le m$
 - $\clubsuit |y| \ge 1$
 - **♦**For all $i \ge 0$, $xy^i z \in L$
- A string of sufficiently large length (|w| ≥ m) can be represented in the form of xyz, and xyⁱz, which is pumped "y" i times, can also always belong to this language

• Similar approach

Even if we pump a portion for a long string, it should be contained in the CFL!

• Pumping lemma for CFL

- Let *L* be a context-free language (infinite)
- There exists a positive integer m such that any $w \in L$, if $|w| \ge m$, there exists w = uvxyz such that
 - $\bigstar |vxy| \le m$
 - $\bigstar |vy| \ge 1$
 - *****For all $i \ge 0$, $uv^i x y^i z \in L$

- For a given CFG G in CNF
 - **♦**For all $w \in L(G)$
 - If the length of the longest path in the parse tree of w is n, then $|w| \le 2^{n-1}$

- For a given CFG G in CNF
 - *****For all $w \in L(G)$
 - If the length of the longest path in the parse tree of w is n, then $|w| \le 2^{n-1}$
- Proof by induction

- For a given CFG G in CNF
 - *****For all $w \in L(G)$
 - If the length of the longest path in the parse tree of w is n, then $|w| \le 2^{n-1}$
- Proof by induction
 - $\bigstar \text{ Let } n = k 1 \text{ and } X \stackrel{*}{\Rightarrow} x$
 - ♦ By the inductive hypothesis, $|x| \le 2^{k-2}$

- For a given CFG G in CNF
 - *****For all $w \in L(G)$
 - If the length of the longest path in the parse tree of w is n, then $|w| \le 2^{n-1}$
- Proof by induction
 - $\bigstar \text{ Let } n = k 1 \text{ and } X \stackrel{*}{\Rightarrow} x$
 - ♦ By the inductive hypothesis, $|x| \le 2^{k-2}$
 - Similarly, consider $Y \stackrel{*}{\Rightarrow} y (|y| \le 2^{k-2})$

• The size of parse tree in CNF

• For a given CFG G in CNF

***** For all $w \in L(G)$

- If the length of the longest path in the parse tree of w is n, then $|w| \le 2^{n-1}$
- Proof by induction
 - $\bigstar \text{ Let } n = k 1 \text{ and } X \stackrel{*}{\Rightarrow} x$
 - ♦ By the inductive hypothesis, $|x| \le 2^{k-2}$
 - Similarly, consider $Y \stackrel{*}{\Rightarrow} y (|y| \le 2^{k-2})$
 - ★ If there is a rule S → XY exists (S ⇒ w) where w = xy, then |w| = |x| + |y| ≤ 2^{k-2} + 2^{k-2} = 2^{k-1}
 - Inductive step is proved

- Proof of pumping lemma
 - Let L be a context-free language

- Proof of pumping lemma
 - Let L be a context-free language
 - Starting with a CNF grammar G = (V, T, S, P) such that L(G) = L

Proof of pumping lemma

- Let L be a context-free language
- Starting with a CNF grammar G = (V, T, S, P) such that L(G) = L
- Let $n \ge 0$ be the number of variables in G and choose $m = 2^n \ge 1$

Proof of pumping lemma

- Let L be a context-free language
- Starting with a CNF grammar G = (V, T, S, P) such that L(G) = L
- Let $n \ge 0$ be the number of variables in G and choose $m = 2^n \ge 1$
- Take any $w = a_1 a_2 \dots a_k \in L$ such that $|w| = k \ge m$

Proof of pumping lemma

- Let L be a context-free language
- Starting with a CNF grammar G = (V, T, S, P) such that L(G) = L
- Let $n \ge 0$ be the number of variables in G and choose $m = 2^n \ge 1$
- Take any $w = a_1 a_2 \dots a_k \in L$ such that $|w| = k \ge m$
- Consider the longest path $(S, A_1, A_2, ..., A_{p-1})$ in the parse tree of w $|w| = k \le 2^{p-1}$
 - ♦ Because $k \ge m = 2^n$, then $2^{p-1} \ge 2^n$, therefore, $p \ge n+1$

* This means that there are at least n + 1 occurrences of variables on the path

Proof of pumping lemma

- Let L be a context-free language
- Starting with a CNF grammar G = (V, T, S, P) such that L(G) = L
- Let $n \ge 0$ be the number of variables in G and choose $m = 2^n \ge 1$
- Take any $w = a_1 a_2 \dots a_k \in L$ such that $|w| = k \ge m$
- Consider the longest path $(S, A_1, A_2, \dots, A_{p-1})$ in the parse tree of w
 - $\bigstar |w| = k \le 2^{p-1}$
 - ♦ Because $k \ge m = 2^n$, then $2^{p-1} \ge 2^n$, therefore, $p \ge n+1$

* This means that there are at least n + 1 occurrences of variables on the path

• As there are only n different variables, at least two of the variables should be the same

♦ Suppose
$$A_i = A_j$$
 where $p - n \le i < j \le p$

- Proof of pumping lemma
 - It is possible to divide the parse tree of w = uvxyz as follows

Proof of pumping lemma

• It is possible to divide the parse tree of w = uvxyz as follows

(1) Since there are no unit or λ productions, v and y could not both be λ $\therefore |vy| \ge 1$

Proof of pumping lemma

• It is possible to divide the parse tree of w = uvxyz as follows

(1) Since there are no unit or λ productions, v and y could not both be λ $\therefore |vy| \ge 1$

(2) The length of the longest path from A_i in the parse tree of w is p - i + 1=> Since $p - n \le i$, then $p - i + 1 \le n + 1$ $\therefore |vxy| \le 2^{n+1-1} = 2^n = m$

Proof of pumping lemma

• It is possible to divide the parse tree of w = uvxyz as follows

(3) For all $i \ge 0$, $uv^i xy^i z \in L$

• Pumping lemma for CFL

- Adversary game
 - I. We pick a language L that we want to show is not a CFL
 - 2. Our "adversary" gets to pick m, which we do not know, and we therefore must plan for any possible m
 - 3. We get to pick w, and may use m as a parameter when we do so
 - 4. Our adversary gets to break w into uvxyz, subject only to the constraints that $|vxy| \le m$ and $|vy| \ge 1$
 - 5. We win the game, if we can, by picking *i* and showing that $uv^i xy^i z$ is not in *L*

• Pumping lemma for CFL: example

Show that the following language is not context free

 $\bigstar L = \{a^n b^n c^n : n \ge 0\}$

• Pumping lemma for CFL: example

• $L = \{a^n b^n c^n : n \ge 0\}$

***** The adversary picks m, and suppose we pick $w = a^m b^m c^m$

***** The adversary breaks w = uvxyz, where $|vxy| \le m$ and $|vy| \ge 1$

• Pumping lemma for CFL: example

• $L = \{a^n b^n c^n : n \ge 0\}$

***** The adversary picks m, and suppose we pick $w = a^m b^m c^m$

*****The adversary breaks w = uvxyz, where $|vxy| \le m$ and $|vy| \ge 1$

Case I: The adversary picks vxy consist entirely of a's (or b's or c's)

• Let
$$|vy| = k$$

• If we pump v and y *i* times $(i \neq 1)$, the result string $w' = a^{m+(i-1)k}b^mc^m \notin L$

• Pumping lemma for CFL: example

• $L = \{a^n b^n c^n : n \ge 0\}$

***** The adversary picks m, and suppose we pick $w = a^m b^m c^m$

*****The adversary breaks w = uvxyz, where $|vxy| \le m$ and $|vy| \ge 1$

Case 2: The adversary picks vxy consist of a's and b's (or b's and c's)

• Then, the pumped string
$$a^k b^k c^m \notin L \ (k \neq m)$$

• Pumping lemma for CFL: example

• $L = \{a^n b^n c^n : n \ge 0\}$

***** The adversary picks m, and suppose we pick $w = a^m b^m c^m$

*****The adversary breaks w = uvxyz, where $|vxy| \le m$ and $|vy| \ge 1$

* The only way is to pick vy with the same number of 'a's, 'b's, and 'c's

- Impossible: because of the condition $|vxy| \le m$
- *L* is not context free!

- Pumping lemma for CFL: example2
 - $L = \{ww: w \in \{a, b\}^*\}$

- Pumping lemma for CFL: example2
 - $L = \{ww: w \in \{a, b\}^*\}$

***** The adversary picks m, and suppose we pick $w = a^m b^m a^m b^m$

*****The adversary breaks w = uvxyz, where $|vxy| \le m$ and $|vy| \ge 1$

• Pumping lemma for CFL: example2

• $L = \{ww: w \in \{a, b\}^*\}$

***** The adversary picks m, and suppose we pick $w = a^m b^m a^m b^m$

*****The adversary breaks w = uvxyz, where $|vxy| \le m$ and $|vy| \ge 1$

Case I: The adversary picks vxy consist entirely of a's

• Let
$$|vy| = k$$

• If we pump v and y i times, the result string $w' = a^{m+(i-1)k}b^m a^m b^m \notin L$

Pumping lemma for CFL: example2

• $L = \{ww: w \in \{a, b\}^*\}$

***** The adversary picks m, and suppose we pick $w = a^m b^m a^m b^m$

*****The adversary breaks w = uvxyz, where $|vxy| \le m$ and $|vy| \ge 1$

Case 2: The adversary picks v consists of a's and y consists of b's

• Then the pumped string $a^k b^j a^m b^m \notin L$ can be generated $(k \neq m \text{ and } j \neq m)$

Pumping lemma for CFL: example2

• $L = \{ww: w \in \{a, b\}^*\}$

***** The adversary picks m, and suppose we pick $w = a^m b^m a^m b^m$

*****The adversary breaks w = uvxyz, where $|vxy| \le m$ and $|vy| \ge 1$

* vy cannot cover both two different blocks consisting of a's (or b's)

- Impossible: because of the condition $|vxy| \le m$
- *L* is not context free!

- Pumping lemma for CFL: example3
 - $L = \{a^n b^n : n \ge 0\}$

- Pumping lemma for CFL: example3
 - $L = \{a^n b^n : n \ge 0\}$

***** The adversary picks m, and suppose we pick $w = a^m b^m$

*****The adversary breaks w = uvxyz, where $|vxy| \le m$ and $|vy| \ge 1$

• Pumping lemma for CFL: example3

• $L = \{a^n b^n : n \ge 0\}$

***** The adversary picks m, and suppose we pick $w = a^m b^m$

*****The adversary breaks w = uvxyz, where $|vxy| \le m$ and $|vy| \ge 1$

The adversary picks v consists of a's $(v = a^k)$ and y consists of b's $(y = b^k)$

- No matter how what i we choose, the resulting pumped string w_i is in L
- Unable to get any conclusion from the pumping lemma in this case

- Pumping lemma for CFL: example4
 - $L = \{a^{n!} : n \ge 0\}$

- Pumping lemma for CFL: example4
 - $L = \{a^{n!} : n \ge 0\}$

***** The adversary picks m, and suppose we pick $w = a^{m!}$

***** The adversary breaks w = uvxyz, where $|vxy| \le m$ and $|vy| \ge 1$

- Pumping lemma for CFL: example4
 - $L = \{a^{n!} : n \ge 0\}$

***** The adversary picks m, and suppose we pick $w = a^{m!}$

*****The adversary breaks w = uvxyz, where $|vxy| \le m$ and $|vy| \ge 1$

Only one case: The adversary picks $v = a^k$ and $y = a^l$

•
$$w_0 = uxz = a^{m! - (k+l)}$$

•
$$m! - (k + l) = j!$$
 ?

- Pumping lemma for CFL: example4
 - $L = \{a^{n!} : n \ge 0\}$

*****The adversary picks m, and suppose we pick $w = a^{m!}$

*****The adversary breaks w = uvxyz, where $|vxy| \le m$ and $|vy| \ge 1$

Only one case: The adversary picks $v = a^k$ and $y = a^l$

•
$$w_{m!+1} = a^{m!+m!(k+l)} = a^{m!(1+k+l)}$$

- $m! < m! \times (1 + k + l) \le m! \times (1 + m) = (m + 1)!$ (because k + l < m)
- *L* is not context free!

• Pumping lemma for CFL: practice

•
$$L = \{a^n b^j : n = j^2\}$$

• Pumping lemma for CFL

- Pumping Lemma for CFL is violated => not a CFL
- Pumping Lemma for CFL is not violated => do not know if it is context free or not

Next Lecture

Closure properties of CFL