Lecture 8 Properties of Context-free Languages

COSE215: Theory of Computation

Seunghoon Woo

Fall 2023

Pumping lemma for context-free languages

- Pumping lemma for CFL: example4
 - $L = \{a^{n!} : n \ge 0\}$

***** The adversary picks m, and suppose we pick $w = a^{m!}$

***** The adversary breaks w = uvxyz, where $|vxy| \le m$ and $|vy| \ge 1$

Pumping lemma for context-free languages

- Pumping lemma for CFL: practice
 - $L = \{a^n b a^n b a^n | n \ge 0\}$

Pumping lemma for context-free languages

• Pumping lemma for CFL: practice

•
$$L = \left\{ a^n b^j : n = j^2 \right\}$$

Contents

Closure properties of context-free languages

• Revisit: closure properties of regular languages

- If L_1 and L_2 are regular languages, then so are
 - $L_1 \cup L_2$ (UNION)
 - ♦ $L_1 \cap L_2$ (INTERSECTION)
 - ♦ $L_1 \cdot L_2$ (CONCATENATION)
 - ♦ $L_1 L_2$ (DIFFERENCE)
 - ♦ $\overline{L_1}$ (COMPLEMENTATION)
 - $\clubsuit L_1^*$ (STAR)

• Revisit: closure properties of regular languages

- If L_1 and L_2 are regular languages, then so are
 - $L_1 \cup L_2$ (UNION)
 - ♦ $L_1 \cap L_2$ (INTERSECTION)
 - ♦ $L_1 \cdot L_2$ (CONCATENATION)
 - ♦ $L_1 L_2$ (DIFFERENCE)
 - ♦ $\overline{L_1}$ (COMPLEMENTATION)
 - $\clubsuit L_1^*$ (STAR)

• What about in the CFL?

Case I) UNION

• If L_1 and L_2 are CFLs, is $L_1 \cup L_2$ also a CFL?

Case I) UNION

- If L_1 and L_2 are CFLs, is $L_1 \cup L_2$ also a CFL?
- Let $G_1 = (V_1, T_1, S_1, P_1)$ and $G_2 = (V_2, T_2, S_2, P_2)$ be context-free grammars (with $V_1 \cap V_2 = \emptyset$)

Case I) UNION

- If L_1 and L_2 are CFLs, is $L_1 \cup L_2$ also a CFL?
- Let $G_1 = (V_1, T_1, S_1, P_1)$ and $G_2 = (V_2, T_2, S_2, P_2)$ be context-free grammars (with $V_1 \cap V_2 = \emptyset$)
- Consider the following CFG

Case I) UNION

- If L_1 and L_2 are CFLs, is $L_1 \cup L_2$ also a CFL?
- Let $G_1 = (V_1, T_1, S_1, P_1)$ and $G_2 = (V_2, T_2, S_2, P_2)$ be context-free grammars (with $V_1 \cap V_2 = \emptyset$)
- Consider the following CFG

 $G_3 = (V_1 \cup V_2 \cup \{S_3\}, T_1 \cup T_2, S_3, P_3), \text{ where } P_3 = P_1 \cup P_2 \cup \{S_3 \to S_1 | S_2\}$

***** Every sentence generated by L_1 ($w_1 \in L_1$) can also be generated by $S_3 \Rightarrow S_1 \stackrel{*}{\Rightarrow} w_1$

★ Every sentence generated by L_2 ($w_2 \in L_2$) can also be generated by $S_3 \Rightarrow S_2 \stackrel{*}{\Rightarrow} w_2$

Case I) UNION

- If L_1 and L_2 are CFLs, is $L_1 \cup L_2$ also a CFL?
- Let $G_1 = (V_1, T_1, S_1, P_1)$ and $G_2 = (V_2, T_2, S_2, P_2)$ be context-free grammars (with $V_1 \cap V_2 = \emptyset$)
- Consider the following CFG

- ♦ Then the CFL $L(G_3) = L_1 \cup L_2$
- CFL is closed under union

Case 2) CONCATENATION

• If L_1 and L_2 are CFLs, is L_1L_2 also a CFL?

Case 2) CONCATENATION

- If L_1 and L_2 are CFLs, is L_1L_2 also a CFL?
- Let $G_1 = (V_1, T_1, S_1, P_1)$ and $G_2 = (V_2, T_2, S_2, P_2)$ be context-free grammars (with $V_1 \cap V_2 = \emptyset$)

Case 2) CONCATENATION

- If L_1 and L_2 are CFLs, is L_1L_2 also a CFL?
- Let $G_1 = (V_1, T_1, S_1, P_1)$ and $G_2 = (V_2, T_2, S_2, P_2)$ be context-free grammars (with $V_1 \cap V_2 = \emptyset$)
- Consider the following CFG

Case 2) CONCATENATION

- If L_1 and L_2 are CFLs, is L_1L_2 also a CFL?
- Let $G_1 = (V_1, T_1, S_1, P_1)$ and $G_2 = (V_2, T_2, S_2, P_2)$ be context-free grammars (with $V_1 \cap V_2 = \emptyset$)
- Consider the following CFG

Any w_1w_2 ($w_1 \in L_1$ and $w_2 \in L_2$) can be generated by $S_3 \Rightarrow S_1S_2 \stackrel{*}{\Rightarrow} w_1w_2$

Case 2) CONCATENATION

- If L_1 and L_2 are CFLs, is L_1L_2 also a CFL?
- Let $G_1 = (V_1, T_1, S_1, P_1)$ and $G_2 = (V_2, T_2, S_2, P_2)$ be context-free grammars (with $V_1 \cap V_2 = \emptyset$)
- Consider the following CFG

Any w_1w_2 ($w_1 \in L_1$ and $w_2 \in L_2$) can be generated by $S_3 \Rightarrow S_1S_2 \stackrel{*}{\Rightarrow} w_1w_2$

♦ Then the CFL $L(G_3) = L_1L_2$

CFL is closed under concatenation

- Case 3) STAR
 - If L is a CFL, is L^* also a CFL?

Case 3) STAR

- If L is a CFL, is L^* also a CFL?
- Let G = (V, T, S, P) be a context-free grammar

Case 3) STAR

- If L is a CFL, is L^* also a CFL?
- Let G = (V, T, S, P) be a context-free grammar
- Consider the following CFG

 $G' = (V \cup \{S'\}, T, S', P'), \text{ where } P' = P \cup \{S' \rightarrow SS' \mid \lambda\}$

Case 3) STAR

- If L is a CFL, is L^* also a CFL?
- Let G = (V, T, S, P) be a context-free grammar
- Consider the following CFG

 $G' = (V \cup \{S'\}, T, S', P'), \text{ where } P' = P \cup \{S' \rightarrow SS' \mid \lambda\}$

♦ Then the CFL $L(G') = L(G)^*$

CFL is closed under star

Case 4) INTERSECTION

• If L_1 and L_2 are CFLs, is $L_1 \cap L_2$ also a CFL?

Case 4) INTERSECTION

• If L_1 and L_2 are CFLs, is $L_1 \cap L_2$ also a CFL?

No!

Counter example: consider the following two CFLs

✤ L₁ = {aⁿbⁿc^m: n ≥ 0, m ≥ 0}
♣ L₂ = {a^mbⁿcⁿ: n ≥ 0, m ≥ 0}

Case 4) INTERSECTION

• If L_1 and L_2 are CFLs, is $L_1 \cap L_2$ also a CFL?

No!

Counter example: consider the following two CFLs

$$\bigstar L_1 = \{a^n b^n c^m : n \ge 0, m \ge 0\}$$

- \clubsuit e.g., Production rules for L_1
 - $S \to S_1 S_2$
 - $S_1 \rightarrow aS_1b \mid \lambda$
 - $S_2 \rightarrow cS_2 \mid \lambda$

Case 4) INTERSECTION

• If L_1 and L_2 are CFLs, is $L_1 \cap L_2$ also a CFL?

No!

Counter example: consider the following two CFLs

$$\bigstar L_2 = \{a^m b^n c^n : n \ge 0, m \ge 0\}$$

- ♦ $L_1 \cap L_2 = \{a^n b^n c^n : n \ge 0\}$, which is not a CFL
- CFL is not closed under intersection

- Case 5) COMPLEMENTATION
 - If L is a CFL, is \overline{L} also a CFL?

Case 5) COMPLEMENTATION

- If L is a CFL, is \overline{L} also a CFL?
- No!
- Suppose: CFL is closed under complementation

• If L_1 and L_2 are CFLs, then $\overline{L_1} \cup \overline{L_2}$ should be a CFL

Case 5) COMPLEMENTATION

• If L is a CFL, is \overline{L} also a CFL?

No!

Suppose: CFL is closed under complementation

♦ If L_1 and L_2 are CFLs, then $\overline{L_1} \cup \overline{L_2}$ should be a CFL

 $\bigstar \overline{\overline{L_1} \cup \overline{L_2}}$ should be a CFL

Case 5) COMPLEMENTATION

- If L is a CFL, is \overline{L} also a CFL?
- No!
- Suppose: CFL is closed under complementation
 - ♦ If L_1 and L_2 are CFLs, then $\overline{L_1} \cup \overline{L_2}$ should be a CFL
 - $\mathbf{\hat{T}}_1 \cup \overline{L_2}$ should be a CFL
 - ♦ $\overline{\overline{L_1} \cup \overline{L_2}} = L_1 \cap L_2 // \text{CONTRADICTION}$
 - CFL is not closed under complementation

Case 6) DIFFERENCE

• If L_1 and L_2 are CFLs, is $L_1 - L_2$ also a CFL?

Case 6) DIFFERENCE

• If L_1 and L_2 are CFLs, is $L_1 - L_2$ also a CFL?

No!

Suppose: CFL is closed under difference

Case 6) DIFFERENCE

• If L_1 and L_2 are CFLs, is $L_1 - L_2$ also a CFL?

No!

Suppose: CFL is closed under difference

 $L_1 - L_2$ should be a CFL

♦ $L_1 - (L_1 - L_2)$ should be a CFL

Case 6) DIFFERENCE

• If L_1 and L_2 are CFLs, is $L_1 - L_2$ also a CFL?

No!

Suppose: CFL is closed under difference

 $L_1 - L_2$ should be a CFL

- ♦ $L_1 (L_1 L_2)$ should be a CFL
- ♦ $L_1 (L_1 L_2) = L_1 \cap L_2 // CONTRADICTION$
- CFL is not closed under difference

	RL	CFL
Union	Ο	Ο
Concatenation	Ο	Ο
Star	Ο	Ο
Intersection	Ο	Х
Complementation	Ο	X
Difference	Ο	X

Next Lecture

• Turing machine