Lecture 9 **Turing Machines** COSE215: Theory of Computation

Seunghoon Woo

Fall 2023

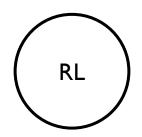
Contents

• Turing machines

Limitation of Pushdown automata

• Finite automata

- Without any additional storage
- FA can accept regular languages



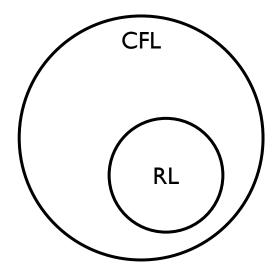
Limitation of Pushdown automata

• Finite automata

- Without any additional storage
- FA can accept regular languages

Pushdown automata

- FA + stack
- (n)PDA can accept context-free languages



Limitation of Pushdown automata

• Finite automata

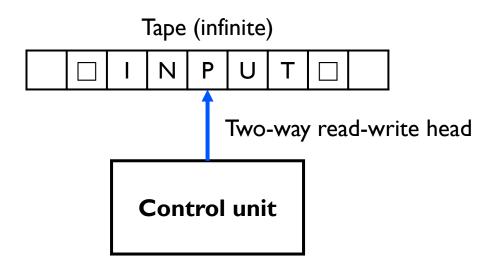
- Without any additional storage
- FA can accept regular languages

Pushdown automata

- FA + stack
- (n)PDA can accept context-free languages
- We can expect to discover even more powerful language families if we give the automaton more flexible storage!

• Turing machine (TM)

- TM has an extra component called a tape
 - ✤ A tape consists of cells
 - A tape, by definition, has infinite length with a two-way read-write head



• Turing machine: Formal definition

• A Turing machine (TM) is a 7-tuple: $M = (Q, \Sigma, \Gamma, \delta, q_0, \Box, F)$

 $\clubsuit Q$ is a finite set of **internal states**

* Σ is a finite set of **symbols**

• $\Sigma \subseteq \Gamma - \{\Box\}$

- $\clubsuit \ \Gamma$ is a finite set of symbols called **tape alphabets**
- \clubsuit δ is a set of transition functions

• $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$

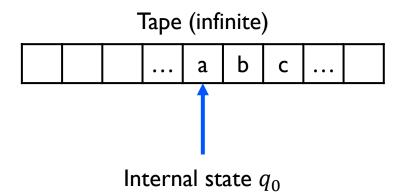
✤ $q_0 \in Q$ is the initial state

↔ □ ∈ Γ is a special symbol called the **blank**

 $\clubsuit F \subseteq Q \text{ is a set of final states}$

Turing machine: Formal definition

- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$
- E.g., $\delta(q_0, a) = (q_1, d, R)$



Turing machine: Formal definition

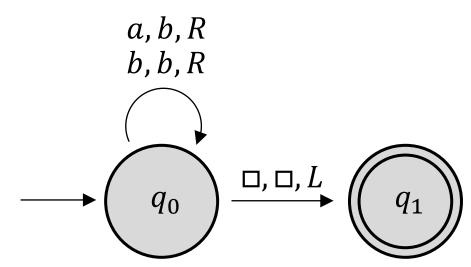
- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$
- E.g., $\delta(q_0, a) = (q_1, d, R)$

• Example

• $M = (\{q_0, q_1\}, \{a, b\}, \{a, b, \Box\}, \delta, q_0, \Box, \{q_1\})$ $\Leftrightarrow \delta(q_0, a) = (q_0, b, R)$ $\Leftrightarrow \delta(q_0, b) = (q_0, b, R)$ $\Leftrightarrow \delta(q_0, \Box) = (q_1, \Box, L)$

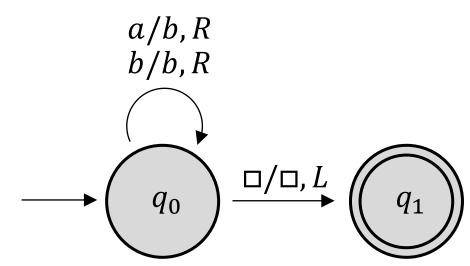
• Example

• $M = (\{q_0, q_1\}, \{a, b\}, \{a, b, \Box\}, \delta, q_0, \Box, \{q_1\})$ $\diamond \delta(q_0, a) = (q_0, b, R)$ $\diamond \delta(q_0, b) = (q_0, b, R)$ $\diamond \delta(q_0, \Box) = (q_1, \Box, L)$



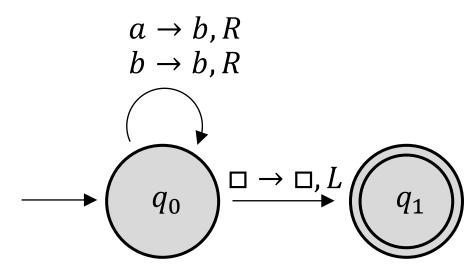
• Example

• $M = (\{q_0, q_1\}, \{a, b\}, \{a, b, \Box\}, \delta, q_0, \Box, \{q_1\})$ $\diamond \delta(q_0, a) = (q_0, b, R)$ $\diamond \delta(q_0, b) = (q_0, b, R)$ $\diamond \delta(q_0, \Box) = (q_1, \Box, L)$



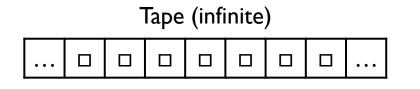
• Example

• $M = (\{q_0, q_1\}, \{a, b\}, \{a, b, \Box\}, \delta, q_0, \Box, \{q_1\})$ $\diamond \delta(q_0, a) = (q_0, b, R)$ $\diamond \delta(q_0, b) = (q_0, b, R)$ $\diamond \delta(q_0, \Box) = (q_1, \Box, L)$



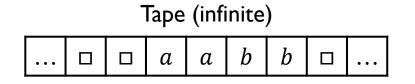
• Turing machine: process

Initially, all tape symbols are blank



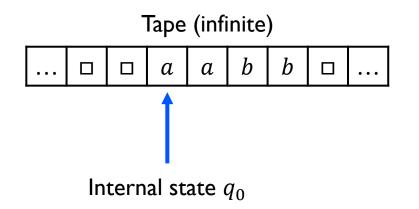
• Turing machine: process

- Initially, all tape symbols are blank
- The machine is started with the input string written somewhere on the tape



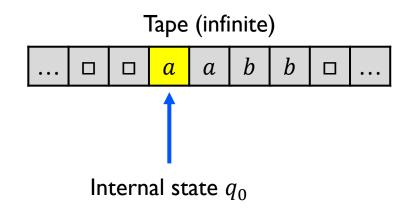
Turing machine: process

- Initially, all tape symbols are blank
- The machine is started with the input string written somewhere on the tape
- The tape head initially points to the first symbol of the input string



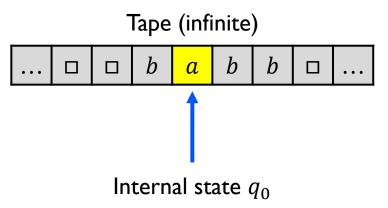
Turing machine: process

- Initially, all tape symbols are blank
- The machine is started with the input string written somewhere on the tape
- The tape head initially points to the first symbol of the input string
- At each step, the TM only looks at the symbol immediately under the head



Turing machine: process

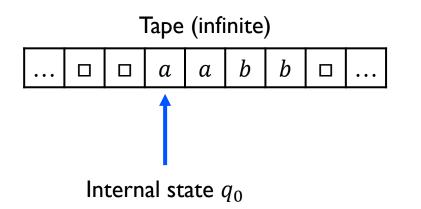
- Initially, all tape symbols are blank
- The machine is started with the input string written somewhere on the tape
- The tape head initially points to the first symbol of the input string
- At each step, the TM only looks at the symbol immediately under the head
- Read or write the symbol, and move the tape head (L or R)

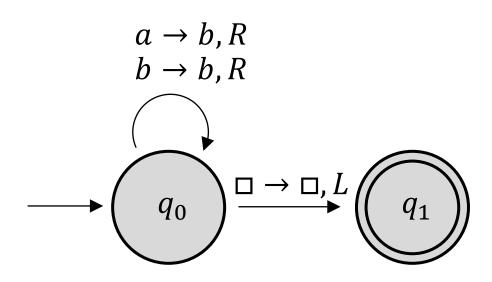


• Example

• E.g., Input string is "aabb"

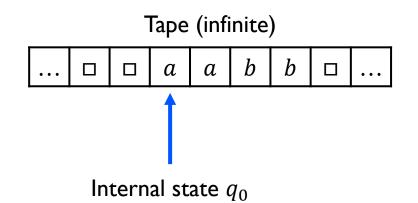
aabb

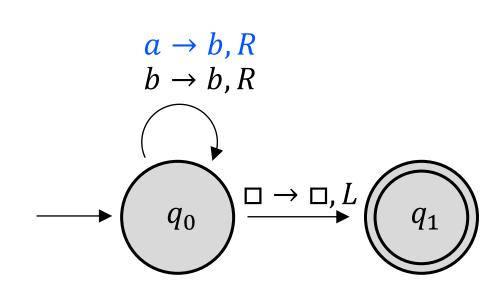




aabb

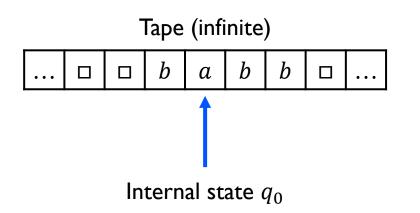
• Example

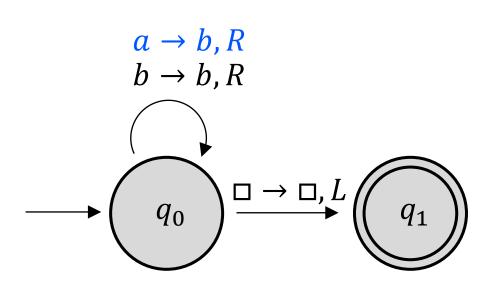




• Example

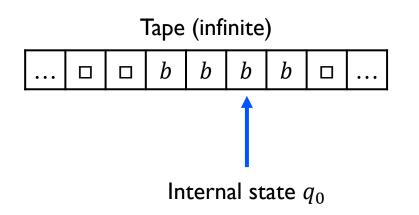
aabb

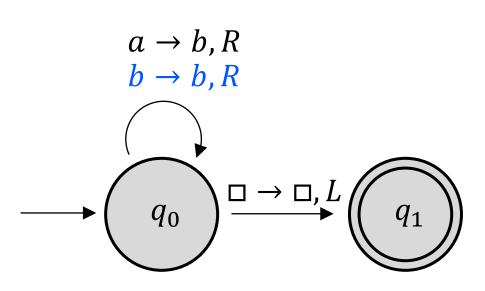




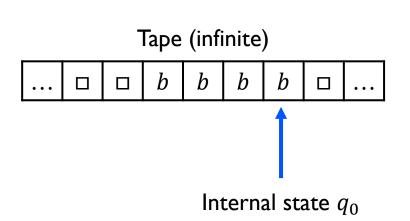
• Example

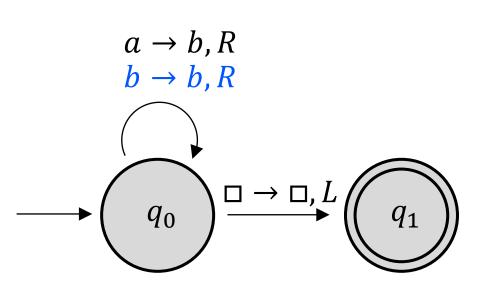
aabb





• Example





• Example

• E.g., Input string is "aabb"

aabb

• Example

• E.g., Input string is "aabb"

aabb



• Standard Turing machine

- The Turing machine has a tape that is unbounded in both directions, allowing any number of left and right moves
- The Turing machine is deterministic in the sense that δ defines at most one move for each configuration
- There is no special input file / output device
 - ✤ We use tape!

Instantaneous Description

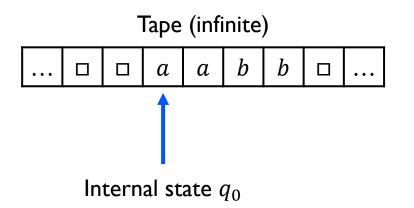
- Any configuration is determined by
 - I. The current state
 - 2. The contents of the tape
 - 3. The position of the head

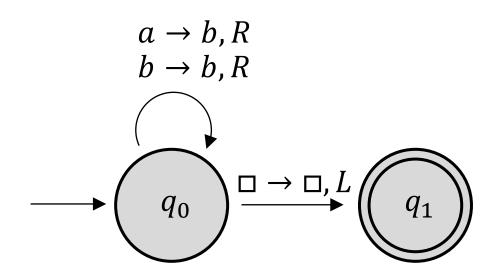
Instantaneous Description

- Any configuration is determined by
 - I. The current state
 - 2. The contents of the tape
 - 3. The position of the head
- Represented as $a_1a_2 \dots a_{k-1}qa_ka_{k+1} \dots a_n$
 - 4 q: current state
 - $a_1a_2 \dots a_n$: tape contents
 - \clubsuit The position of head is over the cell containing the symbol immediately following q
 - In this case, a_k

• Example: ID

• E.g., Input string is aabb





• Example: ID

- E.g., Input string is aabb
 - $\diamondsuit q_0 aabb \vdash bq_0 abb \vdash bbq_0 bb \vdash bbbq_0 b \vdash bbbbq_0 \Box \vdash bbbq_1 b$
 - $\clubsuit q_0 aabb \vdash^* bbbq_1 b$

Instantaneous Description

A move

 $a_1a_2 \dots a_{k-1}q_1a_ka_{k+1} \dots a_n \vdash a_1a_2 \dots a_{k-1}bq_2a_{k+1} \dots a_n$ is possible if and only if $\delta(q_1, a_k) = (q_2, b, R)$ exist

Instantaneous Description

A move

 $a_1 a_2 \dots a_{k-1} q_1 a_k a_{k+1} \dots a_n \vdash a_1 a_2 \dots a_{k-1} b q_2 a_{k+1} \dots a_n$

is possible if and only if $\delta(q_1, a_k) = (q_2, b, R)$ exist

• ATM is said to halt starting from some initial configuration $x_1q_ix_2$ if $x_1q_ix_2 \vdash^* y_1q_jay_2$

for any q_j and a, for which $\delta(q_j, a)$ is undefined

Instantaneous Description

A move

 $a_1 a_2 \dots a_{k-1} q_1 a_k a_{k+1} \dots a_n \vdash a_1 a_2 \dots a_{k-1} b q_2 a_{k+1} \dots a_n$

is possible if and only if $\delta(q_1, a_k) = (q_2, b, R)$ exist

• ATM is said to halt starting from some initial configuration $x_1q_ix_2$ if $x_1q_ix_2 \vdash^* y_1q_jay_2$

for any q_j and a, for which $\delta(q_j, a)$ is undefined

The sequence of configurations leading to a halt state is called a computation

• Turing machines as language accepters

- Start with initial state with the head positioned on the leftmost symbol of w
- After a sequence of moves, if the Turing machine enters a final state and halts, then w is considered to be accepted

• Turing machines as language accepters

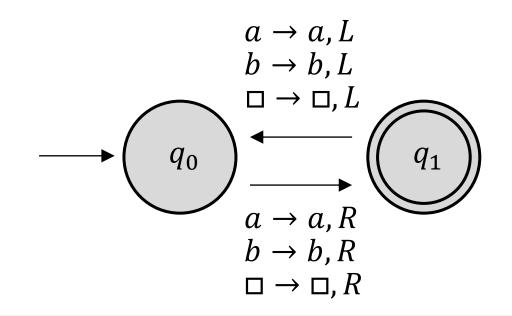
- Start with initial state with the head positioned on the leftmost symbol of w
- After a sequence of moves, if the Turing machine enters a final state and halts, then w is considered to be accepted
- Let $M = (Q, \Sigma, \Gamma, \delta, q_0, \Box, F)$ be a Turing machine

 \clubsuit The language accepted by M is the set

$$L(M) = \{ w \in \Sigma^* : q_0 w \vdash^* x_1 q_f x_2, q_f \in F, x_1, x_2 \in \Gamma^* \}$$

• Turing machines as language accepters

- Non-accepting input string
 - I. The machine halts in a nonfinal state
 - 2. The machine enters an infinite loop and never halt



- Turing machines as language accepters
 - A language L is recursively enumerable if there exists a Turing machine M such that L = L(M)

• **Example:** Design a TM for $L = \{a^n b^n : n \ge 0\}$

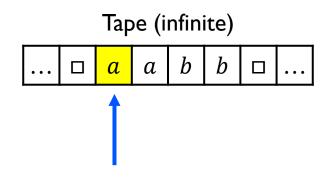
- **Example:** Design a TM for $L = \{a^n b^n : n \ge 0\}$
 - Basic idea
 - Find leftmost a and replace it with a tape symbol (let A)
 - \clubsuit Move head to the right to find the leftmost b
 - Find leftmost b and replace it with a tape symbol (let B)
 - \clubsuit Move head to the left to find the leftmost a
 - \clubsuit If after some time no *a*'s or *b*'s remain, then the input string should be in *L*

- **Example:** Design a TM for $L = \{a^n b^n : n \ge 0\}$
 - Basic idea
 - *** While** there are *a*'s **do**
 - Find and Replace a with A
 - Find and Replace b with **B**

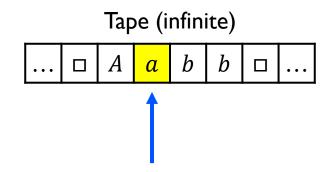
*end

 \clubsuit If no *a*'s or *b*'s remain => accept

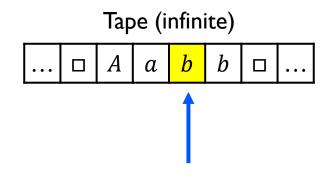
• **Example:** Design a TM for $L = \{a^n b^n : n \ge 0\}$



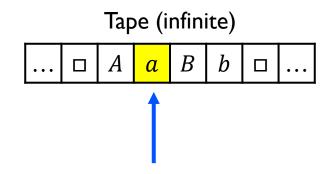
• **Example:** Design a TM for $L = \{a^n b^n : n \ge 0\}$



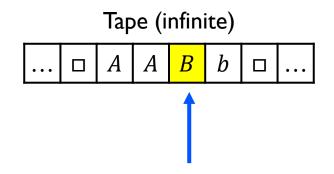
• **Example:** Design a TM for $L = \{a^n b^n : n \ge 0\}$



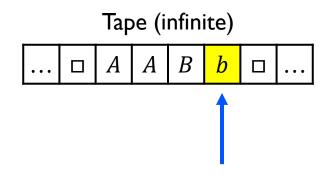
• **Example:** Design a TM for $L = \{a^n b^n : n \ge 0\}$



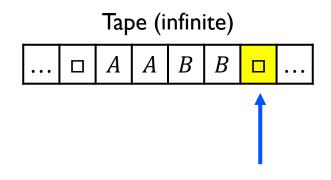
• **Example:** Design a TM for $L = \{a^n b^n : n \ge 0\}$



• **Example:** Design a TM for $L = \{a^n b^n : n \ge 0\}$



• **Example:** Design a TM for $L = \{a^n b^n : n \ge 0\}$



• **Example:** Design a TM for $L = \{a^n b^n : n \ge 0\}$

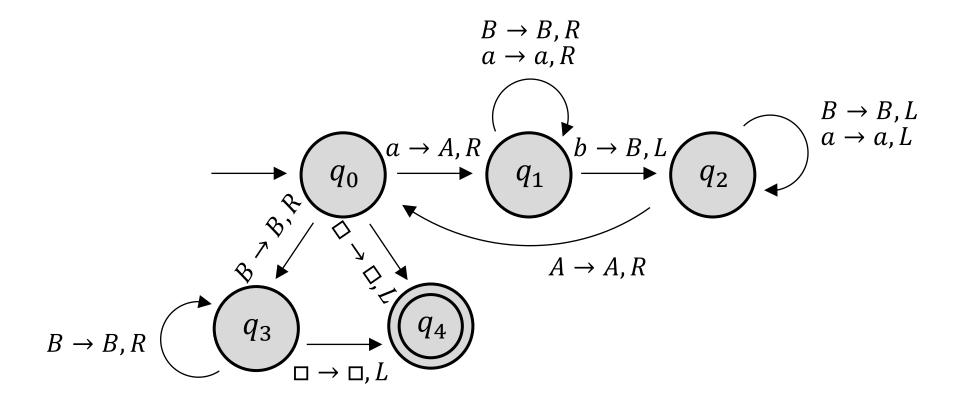
E.g., Input: "aabb"

Tape (infinite)							
		A	A	В	В		•••

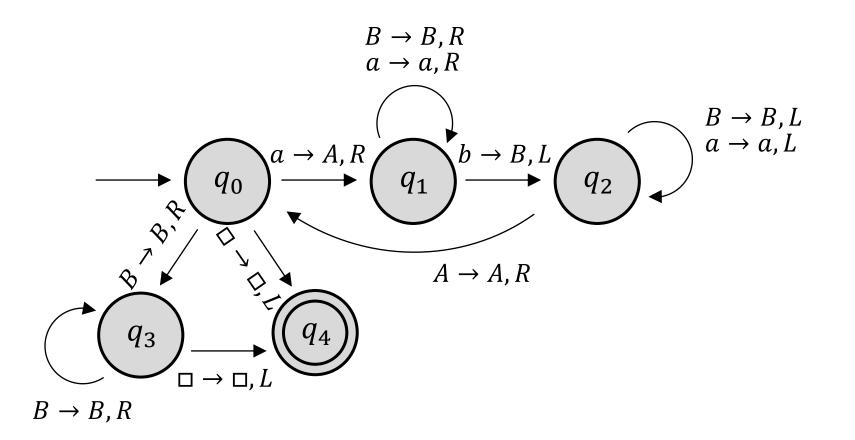
No input symbols => accept

- **Example:** Design a TM for $L = \{a^n b^n : n \ge 0\}$
 - $M = (\{q_0, q_1, q_2, q_3, q_4\}, \{a, b\}, \{a, b, A, B, \Box\}, \delta, q_0, \Box, \{q_4\})$

- **Example:** Design a TM for $L = \{a^n b^n : n \ge 0\}$
 - $M = (\{q_0, q_1, q_2, q_3, q_4\}, \{a, b\}, \{a, b, A, B, \Box\}, \delta, q_0, \Box, \{q_4\})$



• **Example:** Design a TM for $L = \{a^n b^n : n \ge 0\}$



ID for the input string *aabb* q_0aabb $\vdash Aq_1abb$ $\vdash Aaq_1bb$ $\vdash Aq_2aBb$ $\vdash q_2 AaBb$ $\vdash Aq_0 aBb$ $\vdash AAq_1Bb$ $\vdash AABq_1b$ $\vdash AAq_2BB$ $\vdash Aq_2ABB$ $\vdash AAq_0BB$ $\vdash AABq_3B$ $\vdash AABBq_3\Box$ $\vdash AABq_4B$

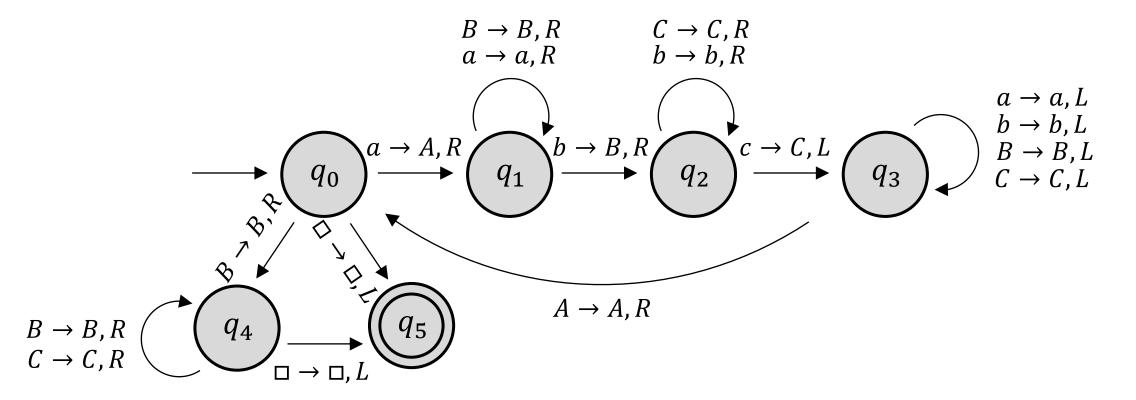
• **Practice:** Design a TM for L = (r) where $r = 01^*0$

• **Practice:** Design a TM for L = (r) where $r = 01^*0$

• **Practice:** Design a TM for $L = \{a^n b^n c^n : n \ge 0\}$

- **Practice:** Design a TM for $L = \{a^n b^n c^n : n \ge 0\}$
 - Hint: basic idea
 - *** While** there are *a*'s **do**
 - Find and Replace a with A
 - Find and Replace b with **B**
 - Find and Replace c with C
 - **∻** end
 - \clubsuit If no symbol *a*, *b*, *c* exist => accept

- **Example:** Design a TM for $L = \{a^n b^n c^n : n \ge 0\}$
 - $M = (\{q_0, q_1, q_2, q_3, q_4, q_5\}, \{a, b, c\}, \{a, b, c, A, B, C, \Box\}, \delta, q_0, \Box, \{q_5\})$



Next Lecture

- Turing machines as transducers (변환기)
- Turing machines for complicated tasks