Please check your attendance
using Blackboard!

Software Security 1

Lecture 1 - Software Security
Principles

[COSE451] Software Security
Instructor: Seunghoon Woo

Spring 2024

Software Security 2

Overview

* Definition of Security

 Basic terms

Software Security 3

Definition of Security

* What is the definition of “computer security”?
* Finding vulnerabilities?
* Preventing hacking?

* Protecting sensitive data?

Software Security 4

Definition of Security

* Fundamental concepts of security

* Ensuring the CIA!
- Confidentiality
- Integrity

CONFIDENTIALITY

- Availability
Security

Software Security)

Confidentiality (7|2)

* Keeping data and resources hidden

» Granting permission to information solely to authorized users

* This guarantees that an attacker cannot obtain protected data

Software Security 6

Confidentiality

* Keeping data and resources hidden

» Granting permission to information solely to authorized users

* This guarantees that an attacker cannot obtain protected data

* If confidentiality is broken?
* Personal information leakage, account and password leakage, etc.

» E.g., The confidential information of a user is exposed in an unencrypted text

Software Security 7

Confidentiality

* Methods to ensure confidentiality

= Cryptography
- Encrypting data with a cryptographic key will assure confidentiality

- Only those with the decryption key can access the contents

= Authentication
- Proof of your identity and conduct (e.g., login process)

- Only authorized users have access to the data

Software Security 8

Integrity (FZ4)

* Ensuring data remains unchanged (as intended)
* Limiting the modification of information to privileged entities

» This guarantees that an attacker cannot modify protected data

Consistent

Gl = G

Software Security 9

Integrity

* Ensuring data remains unchanged (as intended)
* Limiting the modification of information to privileged entities

» This guarantees that an attacker cannot modify protected data

* If integrity is broken?
* The legitimate update file is replaced with a file containing malicious code,
leading to subsequent malicious activities

Consistent

(17uEﬁ <}7uﬂﬂ

Software Security 10

Integrity

* Methods to ensure integrity

= Authentication

- Proof of your identity and conduct (e.g., login process)

- Only authorized users can change the data

= Hash function

- Using hash functions for tamper detection

B EF T cc0e990571 7d6ddaacadf 1abe +ubuntu-16.04, 6-desktop-amndbd. iso
feefbl8e7316c9a16b009923ed958d {64 +ubuntu-16. 04, 6-desktop—i386. iso
acHa'79abba905ebdc3e 131 5dd 16b7360 +ubuntu-16.04, B-server—amdbd. i so
181713801a181507:5ebd5ecBadf 40ba +ubuntu-16.04, B-server—i386. iso

Software Security 11

Availability (7 2/d)

* Ensuring a service (or data/program) accessible

* Prohibiting an attacker from hindering computation

* This guarantees that legitimate uses of the service remain possible

Software Security 12

Availability

* Ensuring a service (or data/program) accessible
* Prohibiting an attacker from hindering computation

* This guarantees that legitimate uses of the service remain possible

* If availability is broken?
* The legitimate user is unable to access the desired data

» E.g., Denial of Service attacks (DoS)

Software Security 13

Availability

* Methods to ensure availability
» Data backup and replication
- Replicating data across multiple locations to protect against issues at a single location

= Error tolerance and recovery

- Building services that are robust and capable of quickly recovering from errors
* Monitoring

- Monitoring resources and data

Software Security 14

Relationship between CIA

CONFIDENTIALITY

Secure!

INTEGRITY AVAILABILITY

Software Security 15

Computer security vs Software security

» Software security

» Focusing on the design, implementation, and operation of software systems,
including the reliable enforcement of confidentiality, integrity and availability

= Can be implemented with Security Development Lifecycles (SDL), Software Bill
of Materials (SBOM), and Vulnerability Disclosure Programs (VDP)

Software Security 16

Basic terms related to software security

 Asset
* Vulnerability (vs Bug)
* Threat (vs Risk)

Software Security 17

Asset

 All valuable things that an organization possesses

* The things we want to protect

» E.g., information, software, hardware, services

Software Security 18

Vulnerability

» Security weakness or flaw in a system, network, software, or any
other entity that could be exploited by attackers

» This can compromise the CIA of the system or its data

Software Security 19

Vulnerability

 Example: HeartBleed vulnerability

= An extremely dangerous vulnerability discovered in OpenSSL*

* This vulnerability embedded in the OpenSSL HeartBeat

- HeartBeat used to exchange periodic signals between the server and the client to
check for any issues or to maintain a stable connection

*OpenSSL: an encryption library that enables secure communication

Software Security 20

Vulnerability

 Example: HeartBleed vulnerability

= Normal case

Are you alive?

Then respond with “YES” (3 letters)
—

Client | | Server
YES

Software Security 21

Vulnerability

 Example: HeartBleed vulnerability

= \Vulnerable case

Are you alive?

Then respond with “YES” (500 letters)
—

Client) Server

Software Security 22

Vulnerability

 Example: HeartBleed vulnerability

= \Vulnerable case

Are you alive?

Then respond with “YES” (500 letters)
—

Client | | Server
YES The user ID is HELLO,
and the password is TEST.
Additionally, the information currently
stored on the server includes...
(data stored on the server)

Software Security 23

Vulnerability

 Example: HeartBleed vulnerability

* Vulnerable code / security patch

- /+ Read tvpe and pavload lenath first =/
- hbivpe = +pt+.

- nesip, pavload):

- pl = pi

if (s->msg_cal lback)
s-rmsg_cal lback(0, s-»>version, TLS!_RT_HEARTBEAT,
Bs->z3->rrec.datall], s-»s3->rrec.lensth,
5, s->msg_cal lback_aral;

{+ Read type and pavlcad length first +/
if (1 + 2+ 16 > s-»s3->rrec. lenath)
return 0: /+ silently discard =/
hbtype = +p++;
nZsip, payload):
if (1 4+ 2+ pavload + 16 * s-*s3-=rrec. length)
return 0: /+ silently discard per RFC BEZ0 sec, 4 «/
plo= o

+ 4+ + + + + + + +

if (Abtwpe == TLS1_HB_REQUEST)
1

unsigned char +buffer, +bp:

Software Security 24

Vulnerability

« Common Vulnerabilities and Exposures (CVEs)
= List of publicly known computer security vulnerabilities
= More than 200,000 CVEs are managed
= CVE MITRE (https://cve.mitre.org/), National Vulnerability Database (NVD)

= CVE-YEAR-ID

- E.g., CVE-2020-14147
* Discoveredin 2020

Software Security 25

https://cve.mitre.org/

Vulnerability

AXCVE-2014-0160 Detail

Description
The (1) TLS and (2) DTLS implementations in OpenSSL 1.0.1 before 1.0.1g do not properly handle Heartbeat Extension packets, which allows

remote attackers to obtain sensitive information from process memory via crafted packets that trigger a buffer over-read, as demonstrated by

reading private keys, related to d1_both.c and t1_lib.c, aka the Heartbleed bug.

Seve rrty CVSS Version 3.x CVSS Version 2.0

CVSS 3.x Severity and Metrics:

m NIST: NVD Base Score: |[SHIGH] Vector: CVSS:3.1/AV:N/AC:L/PR:N/UIN/S:U/C:H/1:N/A:N

Weakness Enumeration

CWE-125 Out-of-bounds Read W NIST

Known Affected Software Configurations switchto cPE2.2

Configuration 1 (hide)
I cpe:2.3:a:openssl:openssli®i* *i*xo* e x From (including) Up to (excluding)
Show Matching CPE(s)* 1.0.1 1.0.1g

Software Security 26

Vulnerability vs Bug

* Bug
* Errors, defects, or unexpected operation of software or programs

" E.g., Type error

nhuml = 10
num2 = 20°
result = numl + num2 // TypeError

» Bugs related to security issues are called vulnerabilities

Software Security 27

Vulnerability vs Bug

* Bug

* Python code example that contains bugs but does not introduce vulnerabilities

def calculate average(numbers):
total = ©
count = 0

for number in numbers:
total += number

count += 1

average = count / (numbers)

return average

Software Security 28

Vulnerability vs Bug

* Bug

= Errors, defects, or unexpected operation of software or programs

[Bug \
4)

Vulnerability

Software Security 29

Threat ($]2)

* The environment that presents the potential for loss or damage

» Potential danger or harmful events

» E.g., The existence of vulnerabilities and hackers, lost hard drive

Software Security 30

Threats * Impersonation attack: a type of targeted
phishing attack where a malicious actor
pretends to be someone else or other entities

Natural Human to steal data from unsuspecting employees

Causes CauSes

Examples: Fire,

. Benign Malicious
power failure

intent intent

Example:
Human error

Random Directed

Example: Malicious
code on a general
web site

Example:
Impersonation

From Security in Computing, Fifth Edition, by Charles P. Pfleeger, et al. (ISBN: 9780134085043)

Software Security

31

Threat ($/21) vs Risk (2/2)

* Risk
* The likelihood of potential harm or loss resulting from the exploitation of
vulnerabilities by threats

» E.g., Information leakage due to vulnerability, attacks by hackers

* Risk = Threat * Vulnerability * Assets

= |If vulnerability does not exist, a threat cannot become a risk

» Reducing risk (risk management) is one of the important issues in security

- E.g., Identifying vulnerabilities and remediating them

Software Security 32

Asset, Vulnerability, Threat, and Risk

Human Resource is
the most valuable

Imbalance is a Asset
weakness i.e.

Vulnerability

| Possibility of falling
down is the RISK

" et b iy
| Crocodilesare | om0y sl
_ the Threats e 5 X

https://www.slideshare.net/mfnaqvi/asset-vulnerability-threat-risk-control
https://sikkertgaute.medium.com/cybersecurity-risks-in-higher-education-part-1-background-assets-threat-events-and-threat-236365e9c3ea

Software Security 33

Design principles for securing software

* Eight principles enumerated by Saltzer and Schroeder

Economy of Fail-safe Complete Open
Mechanism Defaults Mediation Design
Separation of Least Least Common Psychological
Privilege Privilege Mechanism Acceptability
J. H. Saltzer and M. D. Schroeder, “The protection of information in computer systems,” Proceedings of the IEEE, vol. 63, no. 9, pp. 1278-1308, 1975. https://doi:org/10:1109/PROC:1975:9939

Software Security 34

Design principles for securing software

1. Economy of Mechanism
= Keep the design as simple and small as possible

» Simple implementations are easier to manually audit

2. Fail-safe Defaults

» Base access decisions on permission rather than exclusion

» Malicious behaviors are difficult to enumerate and identify exhaustively

Software Security 35

Design principles for securing software

3. Complete Mediation

= Every access to every object must be checked for authority

4. Open Design

* The design should not be secret

* This allows researchers and auditors to examine how security controls
operate to ensure their correctness

» E.g., Open-source software itself is known to be highly secure (Google, etc.)

Software Security 36

Design principles for securing software

5. Separation of Privilege
* Maintaining separation between roles or accounts with different permissions
* E.g., to not allow users with administrator privileges to also have regular user
privileges
* This increases the security of the system by allowing multiple accounts or roles to
have some privileges rather than one account having all privileges

6. Least Privilege

= Strengthen system security by granting only the minimum necessary privileges to
each user or process

» E.g. if an operation needs to only read some information, it should not also be
granted the privileges to write or delete this information

Software Security 37

Design principles for securing software

7. Least Common Mechanism

= Minimize the amount of mechanism common to more than one user and
depended on by all users

» Shared objects provide potentially dangerous channels for information flow
and unintended interactions
8. Psychological Acceptability

* The human interface should be designed for ease of use

» The security control should be naturally usable so that users ‘routinely and
automatically’apply the protection

Software Security 38

Next Lecture

 Authentication

Software Security 39

