Please check your attendance
using Blackboard!

Software Security 1

Lecture 6 - Secure Software
Development Lifecycle

[COSE451] Software Security
Instructor: Seunghoon Woo

Spring 2024

Software Security 2

Revisit..

Memory safety

» Stack buffer overflow

» Example
(argc argv[]) {
valid
stri[2]
str2[2]
(str2) Oxfffd09c
((stri, str2)
valid Oxffffd0a0
(strl, str2, valid) 0Kﬁﬁd0&4
- Oxffffdoas
OxffffdOac

0000
0000
STAR
TOO0O
0000

str2

strl

valid

Software Security 3

Overview

* Secure Software Development Lifecycle

Software Security 4

Software Development Lifecycle

* The process of planning, creating, testing, and deploying
information systems across hardware and software

» Formalizing the tasks into 6-8 phases with the goal to improve software quality
- The phases may vary depending on the company and purpose

- Waterfall, V-shaped model, Agile, Sprial, etc.

PLAN itzelillis DESIGN DEVELO- DOCUMENT TEST DEPLOY MAINTAIN
MENTS PMENT

Software Security)

Software Development Lifecycle

Plan Determine the scope and purpose of the software

Requirements | Define what functions the software should perform

Design Decide key parameters like architecture, platforms, and user interfaces

Development | Create and implement the software

Document Produce the information to help stakeholders understand how to use and operate the software
Test Validate that the software fulfills the requirements
Deploy Make the software available to its intended users
Maintain Resolve bugs or vulnerabilities discovered in the software

PLAN itzelillis DESIGN DEVELO- DOCUMENT TEST DEPLOY MAINTAIN
MENTS PMENT

Software Security 6

Software Development Lifecycle

 Advantages
* Increased visibility of all relevant stakeholders into the development process
= Efficient estimating, planning and scheduling
* Improved risk management and cost estimation

» Systematic software provision and improvement of customer satisfaction

> PLA>> REQU">> DESIC>> DEVE'>>DOCUN>> TES'>> DEPLOY>> MA|N1>
MENTS PMENT

Software Security 7

Software Development Lifecycle

* Problems of traditional SDL

= Security related activities are deferred until the testing phase!!

- Late in the SDLC after most of the critical design and implementation has been completed

- Limited to code scanning and penetration testing

* Might not reveal more complex security issues

> PLA>> REQU">> DESIC>> DEVE'>>DOCUN>> TES'>> DEPLOY>> MAINTAIN
MENTS PMENT

Software Security 8

Secure Software Development Lifecycle

* Effective security processes requires teams to “shift left”

» Starting at project inception and running throughout the project

> PLA>> REQU">> DESIC>> DEVELO>>DOCUN>> TEST>> DEPL(>> MAlNTA>
MENTS PMENT

Software Security 9

Secure Software Development Lifecycle

* Plan
= Assess risks and security threat landscape

» Evaluate the potential impact of security incidents

- E.g., reputational risk to the business

> PLAI>> REQU">> DESIC>> DEVE'>>DOCUN>> TES'>> DEPL(>> MA|NTA>
MENTS PMENT

Software Security 10

Secure Software Development Lifecycle

* Requirements

* Include security requirements as part of defining functional requirements

- E.g., must include vulnerability verification

PLAN dselillis DESIGN DEVELO- DOCUMENT TEST DEPLOY MAINTAIN
MENTS PMENT

Software Security 11

Secure Software Development Lifecycle

* Design
» Make security considerations an integral part of the architecture plan

= Evaluate security impact of design phase choices such as platform and Ul

N
PLAN iddein s DESIGN DEVELO- DOCUMENT TEST DEPLOY MAINTAIN
MENTS PMENT
/

Software Security 12

Secure Software Development Lifecycle

* Development
» Educate developers on secure coding practices

" I[ncorporate security testing tools in development process

- E.g., static and dynamic analysis tools

» Evaluate software dependencies and mitigate potential security risks

PLAN dselillis DESIGN DEVELO- DOCUMENT TEST DEPLOY MAINTAIN
MENTS PMENT

Software Security 13

Secure Software Development Lifecycle

* Document

= Security controls and process documentation

* Assemble the information to prepare for audits, compliance checks, and
security reviews

\
_ \
PLAN el DESIGN DEVELO- DOCUMENT > TEST DEPLOY MAINTAIN
MENTS PMENT /

Software Security 14

Secure Software Development Lifecycle

e Test

* Implement code review processes

= Perform security testing

- E.g., static analysis and interactive application security testing

> PLA>> R;%:T:’>> DESIC>> DEVE'>>DOCUN>> TES'>> DEPL(>> MA|NTA>
PMENT

Software Security 15

Static / dynamic analysis

* Static analysis

* Examining source code without executing it

- To identify potential security vulnerabilities

= Also called whitebox testing

* Dynamic analysis
= Running the program and analyzing its behavior during execution

- To identify potential security vulnerabilities

» Also called blackbox testing

Software Security 16

Static analysis

» Static analysis: symbolic execution
* A bug finding technique that is easy to use
» Key idea

- Evaluate the program on symbolic input values (rather than using a concrete input)

- Use an automated theorem prover to check whether there are corresponding concrete
input values that make the program fail

Software Security 17

Static analysis

» Static analysis: symbolic execution

()
(x > y):
X X Y
y =X -y
X X -y
(x -y) :
()
(X, y)

18

Software Security

Static analysis

X — A
y — B

» Static analysis: symbolic execution

()
(x > y):
X X Y
y =X -y
X X -y
(x -y) :
()
(X, y)

19

Software Security

Static analysis

X — A A<B

y — B
» Static analysis: symbolic execution
X — A
(X, ¥):) E
(x > y): feasible!
X X + Yy
y =X -y
X = X -y
(x -y > 9):
()
(X, ¥)

20

Software Security

Static analysis

A>B X — A A<B

y — B
» Static analysis: symbolic execution

x — A+ B X — A
0, y): v B y B
(x > y): feasible!
X = X + Yy
y =X -Yy
X = X -y
(x -y > 0):
0)
(x, y)

21

Software Security

Static analysis

X — A
° ° o ° y — B
» Static analysis: symbolic execution l l
X — A+ X — A
0, y): B y B
(x > y): l feasible!
X X y x — A+ B
y =X -y y — A
X = X -y
(x -y > 9):
()
(X, ¥)

Software Security 22

Static analysis

x — A
f =
» Static analysis: symbolic execution
X — A + X — A
0, y): B y B
(x > y): l feasible!
X X y x — A+ B
y =X -y y — A
X = X - Yy l
(x -y) :
) x — B
(% y) s

Software Security 23

Static analysis

x — A
F e T
» Static analysis: symbolic execution
X — A + x — A
0, y): B y B
(x > y): l feasible!
X X y x — A+ B
y =Xx -y y — A
X = X - Yy l
X :
(_V()) x —B B>A
(X, ¥) it
assert()
infeasible!

Software Security 24

Static analysis

X — A

y — B
» Static analysis: symbolic execution
X — A+ x — A
(% ¥): i i
(x > y): l feasible!
X X y x — A+ B
y = X -y y — A
X = X - Yy l
X -
(_V()) B<A X — B B>A
(x, ¥) y —A
feasible! assert()
infeasible!

Software Security 25

Static analysis

» Static analysis: symbolic execution

» Explores all execution paths of a program and generates test input values
- This helps uncover bugs sensitive to specific conditions or boundary conditions

» Ensures high coverage of a program's execution paths

= Can discover bugs in a program by exploring various execution paths

- E.g., assertion violations, buffer overflows

Software Security 26

Dynamic analysis

* Dynamic analysis: fuzz testing (fuzzing)

= A technique used in security testing to discover bugs or vulnerabilities that
may exist in software or systems

= Key idea

- Generating random input values to explore various parts of a system

Software Security 27

Dynamic analysis

* Dynamic analysis: fuzz testing (fuzzing)

Software Security 28

Dynamic analysis

* Dynamic analysis: fuzz testing (fuzzing)

ABC
——

response [

Software Security 29

Dynamic analysis

* Dynamic analysis: fuzz testing (fuzzing)

ABCDEFG..

——

response

Software Security 30

Dynamic analysis

* Dynamic analysis: fuzz testing (fuzzing)

» Typically automated using specialized tools and plays a crucial role in
enhancing the stability and security of software

= Particularly effective in finding security vulnerabilities

- It can be run continuously until vulnerabilities are discovered and addressed

Software Security 31

Dynamic analysis

Yo 195042787 + Malformed Bluetooth L2CAP Packet Causes N...

° Dynamic anaIYSiS: fuzz tESting an...@google.com <an...@google.com> #38 Dec 17,2021 07:36AM

Congratulations! The rewards committee decided to reward you USD
$2,000 for reporting this Moderate severity vulnerability. We are paying
for the bug report and proof of concept.

Additional recognition
Admin Framework

We would like to acknowledge Simon Andersen of Aarhus University and Pico Mitchell for their
assistance.

Bluetooth

We would like to acknowledge Haram Park, Korea University for their assistance.

heeiie Xiaomi staff posted 2 comment December 19, 2023, 9:40am UTC

Bluetooth keeps stopping Dear,

Thank you for your interest in Xiaomi.

@ App info

We think this issue is difficult to exploit and the impactis limited. So the level is reduced to low risk.
X Close app We appreciate each vulnerability report and express sincere gratitude to every expert who is making efforts in researching Xiaomi products. This

vulnerability is confirmed and you will get awarded.
[£] send feedback

Thank you for helping keep xiaomi secure!

Software Security 32

Static & dynamic analysis

* Taint analysis
» To track the flow of sensitive or untrusted data through a program

* The term "taint" refers to data that originates from an untrusted or potentially
dangerous source, such as user input or external network communication

» Taint analysis helps identify potential security vulnerabilities by tracing how
tainted data propagates through the program and interacts with other data

Software Security 33

Static & dynamic analysis

* Taint analysis

()

= N X

(w)

Software Security 34

Static & dynamic analysis

source();
e Taint analysis * Indicates the point at which sensitive data enters the program
* This refers to data that originates outside the program
* E.g., userinput, external API calls, or reading data from
the file system

(@)

X

= N M X

Z

y
(w)

sink();
* Indicates the point within a program
where a specific task is performed
* An area where sensitive data can reach
and exploit that data to create security vulnerabilities

Software Security 35

Static & dynamic analysis

* Taint analysis

X » 0->T(Tainted)

(@)

= N M X

(w)

Software Security 36

Static & dynamic analysis

* Taint analysis

X » 0->T(Tainted)
” (0) y » 1->NT(Not Tainted)
y
Z X
W y z
(W)

Software Security 37

Static & dynamic analysis

* Taint analysis

z
X \ 0->T(Tainted)

” (0) y » 1->NT(Not Tainted)
y
Z X
W y z
(W)

Software Security 38

Static & dynamic analysis

* Taint analysis

Z
X \ 0->T(Tainted)
” (0) y » 1->NT(Not Tainted)
y W »y + z = 1->T(Tainted)
Z X
W y z
(W)

39

Software Security

Static & dynamic analysis

* Taint analysis

Z
X \> 0->T(Tainted)
” (0) y » 1->NT(Not Tainted)
y W »y + z = 1->T(Tainted)
Z X
W y z
(w)

Leak in the program!

40

Software Security

Static & dynamic analysis

* Taint analysis

uinput ()
size uinput

buf|]

(buf[idx])

Software Security 41

Secure Software Development Lifecycle

* Deploy
= Security assessment of deployment environment

= Review configurations for security

* Maintain
* Implement monitoring to detect threats

» Be prepared to respond to vulnerabilities and intrusions with remediations

O\ PN
> PLA>> R;%:T:’>> DESIC>> g:n‘éﬁ'>>uocwv>> TEST>\ DEPLOY > > MAINTAIN >
vy 4

Software Security 42

Next Lecture

* Holiday!

* Don't forget to vote!

Software Security 43

