Lecture 8 – Open-source Software Security

[COSE451] Software Security

Instructor: Seunghoon Woo

Spring 2024

Overview

- Open-source software & Licenses
- Vulnerabilities in OSS

- Common Vulnerabilities and Exposures (CVE)
 - A standardized identifier system for tracking and identifying vulnerabilities
 - Discovered in computer systems, networks, software, hardware, and other technologies
 - The CVE program is overseen by the MITRE Corporation
 - https://cve.mitre.org/
 - Currently, approximately 200,000 CVE vulnerabilities are being managed
 - CVE-YEAR-NUMBER
 - E.g., CVE-2016-5195

Common Vulnerabilities and Exposures (CVE)

Field	Explanation			
CVE ID	A vulnerability unique identifier assigned by the MITRE corporation			
Descriptions A summary of the overall introduction of each vulnerability, including affected products and attack vectors				
Severity	An indicator that represents the severity of a vulnerability			
Types	A value indicating the type of vulnerability, such as buffer overflow or out-of-bounds read/write			
Affected software configurations	The name and version information of the software that are affected by the vulnerability			
References	A set of reference links related to the vulnerability			

基CVE-2016-5195 Detail

Description

Race condition in mm/gup.c in the Linux kernel 2.x through 4.x before 4.8.3 allows local users to gain privileges by leveraging incorrect handling of a copy-on-write (COW) feature to write to a read-only memory mapping, as exploited in the wild in October 2016, aka "Dirty COW."

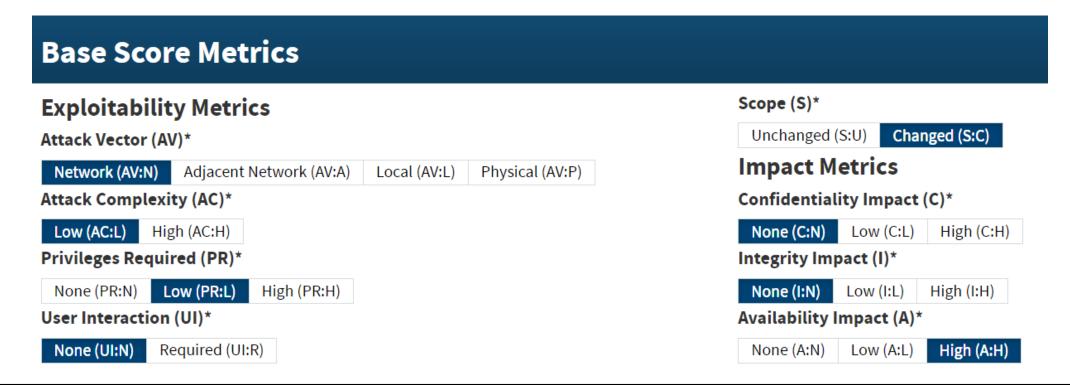
Weakness Enumeration

CWE-ID	CWE Name	Source
CWE-362	Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')	NIST

Known Affected Software Configurations Switch to CPE 2.2

▼ cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:*	From (including)	Up to (excluding)		
Show Matching CPE(s).▼	2.6.22	3.2.83		
♥ cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*	From (including)	Up to (excluding)		
Show Matching CPE(s)▼	3.3	3.4.113		

References to Advisories, Solutions, and Tools


Hyperlink	Resource
ttp://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=19be0eaffa3ac7d8eb6784ad9bdbc7d67ed8e619	Issue Tracking Patch
	Vendor Advisory

DIRTY COW

- Common Vulnerability Scoring System (CVSS)
 - An open standard for assigning scores to rate the severity of vulnerabilities
 - Scores are given from 0.0 to 10.0
 - Higher numbers indicating greater severity of the vulnerability

- Common Vulnerability Scoring System (CVSS)
 - Measurement standard

- Common Weakness Enumeration (CWE)
 - A list of common software and hardware weakness types
 - Approximately 1,000 CWEs are defined
 - Stack buffer overflow, integer overflow, race condition, out-of-bounds read, etc.
 - https://cwe.mitre.org/data/published/cwe_latest.pdf

Common Platform Enumeration (CPE)

- A structured naming scheme for information technology systems and software
 - More than 10,000 software/hardware are defined as CPE
- Used to specify the affected software (including OSS) by vulnerabilities

₩CVE-2016-5195 Detail

Known Affected Software Configurations Switch to CPE 2.2

# cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:* Show Matching CPE(s)▼	From (including) 2.6.22	Up to (excluding)
# cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:*:*:*:*:*:*:*:*:*:*:*:*	From (including)	Up to (excluding)
Show Matching CPE(s)▼	3.3	3.4.113
<pre># cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*</pre>	From (including)	Up to (excluding)
Show Matching CPE(s)▼	3.5	3.10.104
<pre># cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:</pre>	From (including)	Up to (excluding)
Show Matching CPE(s)▼	3.11	3.12.66
<pre># cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:</pre>	From (including)	Up to (excluding)
Show Matching CPE(s)▼	3.13	3.16.38
<pre># cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*</pre>	From (including)	Up to (excluding)
Show Matching CPE(s)▼	3.17	3.18.44
♥ cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:	From (including)	Up to (excluding)
Show Matching CPE(s)▼	3.19	4.1.35
<pre># cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*</pre>	From (including)	Up to (excluding)
Show Matching CPE(s)▼	4.2	4.4.26
♥ cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:	From (including)	Up to (excluding)
Show Matching CPE(s)▼	4.5	4.7.9
<pre># cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*</pre>	From (including)	Up to (excluding)
Show Matching CPE(s)▼	4.8	4.8.3

Security patch

- Code patches containing information to fix vulnerable code
- In general, security patches are provided in the form of "diff" of a code before and after applying the patch

1. Discovery

- Discovering vulnerabilities
 - Using static/dynamic analysis
 - These will be covered in more detail in later lectures
 - Penetration testing
- Cause analysis and remediations must also be confirmed at this stage

2. Report submission

- Needs to be reported to a CVE Numbering Authority (CNA)
 - CNA: organizations authorized by the CVE Program to assign CVE IDs to vulnerabilities

CNA Program Growth

Currently, there are **376 CNAs** (374 CNAs and 2 CNA-LRs) from **40 countries** and 1 no country affiliation participating in the CVE Program.

2. Report sul

■ Needs to be

- CNA: org

	Partner	Scope	Program Role	Organization Type	Country*
Financial Security Institute (FSI)		Vulnerability assignment related to FSI's vulnerability coordination role in the South Korea financial sector that are not in another CNA's scope	CNA	CERT, Researcher, Bug Bounty Provider	South Korea
{	Hanwha Vision Co., Ltd.	Hanwha Vision (formerly Samsung Techwin and Hanwha Techwin) products and solutions only, including end-of-life (EOL)	CNA	Vendor	South Korea
	KrCERT/CC	Vulnerability assignment related to its vulnerability coordination role	CNA	CERT	South Korea
	LG Electronics	LG Electronics products only	CNA	Vendor	South Korea
	Naver Corporation	Naver products only, except Line products	CNA	Vendor	South Korea
	Samsung Mobile	Samsung Mobile Galaxy products, personal computers, and related services only	CNA	Vendor	South Korea
Samsung TV & Appliance		Samsung TV & Appliance products, Samsung-owned open-source projects listed on	CNA	Open Source, Researcher, Vendor	South Korea

s to vulnerabilities

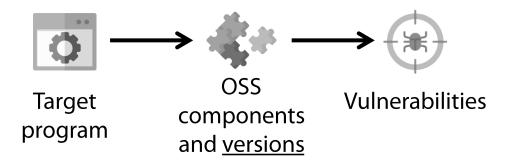
2. Report submission

- Needs to be reported to a CVE Numbering Authority (CNA)
 - CNA: organizations authorized by the CVE Program to assign CVE IDs to vulnerabilities
- A variety of information must be reported together
 - Description, affected products, type, Proof of Concept (PoC), mitigation recommendations, security patches, etc.

3. CVE ID assignment

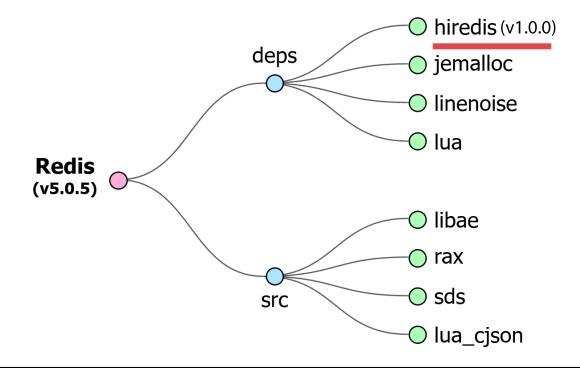
- The CNA reviews the vulnerability report and assigns a unique CVE ID to it
 - Only if it meets the CVE program's criteria
- Thereafter, CNA creates a CVE entry for the vulnerability
 - This entry includes detailed information about the vulnerability such as its description, affected products, severity level, and any relevant references

- Two types of vulnerability
 - Zero-day (0-day)
 - One-day (1-day)


Two types of vulnerability

- Zero-day (0-day)
 - A vulnerability has been discovered, but a patch for it has not been released yet
 - I.e., Unknown vulnerability
- One-day (1-day)
 - A vulnerability has been discovered and a patch for it has been announced, but it has not yet been applied
 - It takes time to apply a security patch right away, so attackers target this period

- Two main approaches to respond to 1-day vulnerabilities
 - Version-based approach
 - Code-based approach


(1) Version-based vulnerability detection approach

Detect vulnerabilities based on the name and version of reused OSS

(1) Version-based vulnerability detection approach

Detect vulnerabilities based on the name and version of reused OSS

(1) Version-based vulnerability detection approach

Detect vulnerabilities based on the name and version of reused OSS

Vendor, Product, Version Search

#	Vendor	Product	Version	Language	Target Platform	Number of Vulnerabilities		
1	Redis	Hiredis	1.0.0 N/A				1	Version Details
2	Redis	Hiredis	1.0.0 rc1				1	Version Details

(1) Version-based vulnerability detection approach

`calloc()` call doesn't itself make this check, it would result in a short allocation and subsequent buffer overflow. Users of

hiredis who are unable to update may set the [maxelements](https://github.com/redis/hiredis#reader-max-array-

Detect vulnerabilities based on the name and version of reused OSS

Redis » Hiredis » 1.0.0 : Security Vulnerabilities, CVEs, cpe:2.3:a:redis:hiredis:1.0.0:-:*:*:*:*:* CVSS Scores Greater Than: 0 1 2 3 4 5 6 7 8 9 In CISA KEV Catalog Sort Results By: Publish Date ↓ Update Date ↓ CVE Number ↓ CVE Number ↓ CVSS Score ↓ EPSS Score ↓ EPSS Score ↓ Copy Copy CVE-2021-32765 Max CVSS EPSS Score Hiredis is a minimalistic C client library for the Redis database. In affected versions Hiredis is vulnurable to integer overflow if provided maliciously crafted or corrupted 'RESP' 'mult-bulk' protocol data. When parsing 'multi-bulk' (array-Published 2021-10-04 like) replies, hiredis fails to check if 'count * sizeof(redisReply*)' can be represented in 'SIZE_MAX'. If it can not, and the Updated 2022-12-07

(1) Version-based vulnerability detection approach

Detect vulnerabilities based on the name and version of reused OSS

₩CVE-2021-32765 Detail

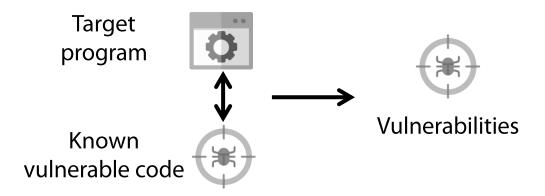
Description

Hiredis is a minimalistic C client library for the Redis database. In affected versions Hiredis is vulnurable to integer overflow if provided maliciously crafted or corrupted `RESP` `mult-bulk` protocol data. When parsing `multi-bulk` (array-like) replies, hiredis fails to check if `count * sizeof(redisReply*)` can be represented in `SIZE_MAX`. If it can not, and the `calloc()` call doesn't itself make this check, it would result in a short allocation and subsequent buffer overflow. Users of hiredis who are unable to update may set the [maxelements] (https://github.com/redis/hiredis#reader-max-array-elements) context option to a value small enough that no overflow is possible.

References to Advisories, Solutions, and Tools

Hyperlink	Resource
https://github.com/redis/hiredis/commit/76a7b10005c70babee357a7d0f2becf28ec7ed1e	Patch
	Third Party Advisory

(1) Version-based vulnerability detection approach


Detect vulnerabilities based on the name and version of reused OSS

```
√ 

1 ■ hiredis.c (□
               @@ -174,6 +174,7 @@ static void *createArrayObject(const redisReadTask *task, size t elements) {
174
       174
                       return NULL;
175
       175
                   if (elements > 0) {
176
       176
       177 +
                      if (SIZE_MAX / sizeof(redisReply*) < elements) return NULL; /* Don't overflow */
                      r->element = hi_calloc(elements, sizeof(redisReply*));
177
       178
                       if (r->element == NULL) {
178
                           freeReplyObject(r);
179
       180
```

(2) Code-based vulnerability detection approach

- Detect vulnerabilities based on the known vulnerable code
 - Identifying codes syntactically or semantically similar to vulnerable code

(2) Code-based vulnerability detection approach

Detect vulnerabilities based on the known vulnerable code

```
1 ...}
2 if ((flags & FOLL_NUMA) && pte_protnone(pte))
3    goto no_page;
4 if ((flags & FOLL_WRITE) && !pte_write(pte)) {
5    pte_unmap_unlock(ptep, ptl);
6    return NULL;
7 }...
8 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
9    *flags &= ~FOLL_WRITE;
10    return 0;
11 }...
```

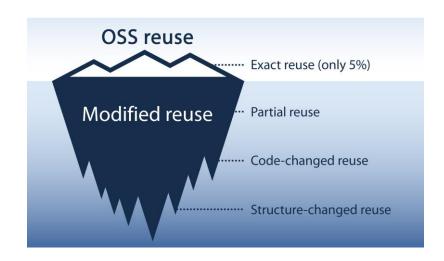
A code snippet found in the Android firmware (in 2017)

(2) Code-based vulnerability detection approach

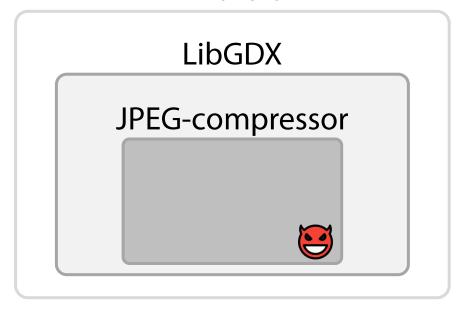
Detect vulnerabilities based on the known vulnerable code

```
1 ...}
2 if ((flags & FOLL_NUMA) && pte_protnone(pte))
3    goto no_page;
4    if ((flags & FOLL_WRITE) && !pte_write(pte)) {
5        pte_unmap_unlock(ptep, ptl);
6        return NULL;
7    }...
8    if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
9        *flags &= ~FOLL_WRITE;
10        return 0;
11    }...
```

A code snippet found in the Android firmware (in 2017)


- A part of security patch
 - Removed flag to check write permission
 - + Add a flag indicating that the request is a COW area

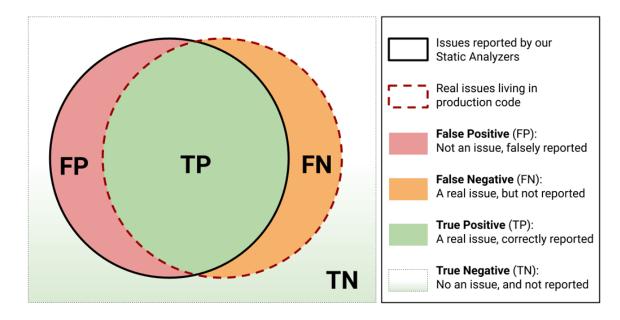
- Challenge: Modified OSS reuse
 - Languages that mainly use package managers (e.g., Java, JavaScript, Python)
 - Modified reuse does not occur often


Challenge: Modified OSS reuse

- Languages that mainly use package managers (e.g., Java, JavaScript, Python)
 - Modified reuse does not occur often
- In the case of languages that mainly use code level OSS reuse (e.g., C/C++)
 - Modified OSS reuse is prevalent!
 - Reuse only the necessary code parts (partial reuse) with code/structural modifications

Example

Android



LibGDX/JPEG-compressor

- Example
 - ReactOS/LibXML2

- Why does modified reuse make vulnerability detection difficult?
 - Version-based detection techniques produce many false positives
 - Code-based detection techniques yield many false negatives

- Why does modified reuse make vulnerability detection difficult?
 - Version-based detection techniques produce many false positives
 - Code-based detection techniques yield many false negatives

Next Lecture

Supply chain security