Lecture 9 -
Malicious Software

[COSE451] Software Security
Instructor: Seunghoon Woo

Spring 2024

Software Security 1

Review Lecture 8

* Why does modified reuse make vulnerability detection difficult?
= Version-based detection techniques produce many false positives

» Code-based detection techniques yield many false negatives

Software Security 2

Review Lecture 8

* Example: Version-based vulnerability detection approach

ReochS - @
&/// \/ \

ReactOS

https://github.com/reactos/reactos

Version-
based
detector

Software Security 3

Review Lecture 8

* Example: Version-based vulnerability detection approach

Libtirpc (v0.1.11)

()
R@GQTOS — @ — Tl LibTIFF (v4.0.10)
= l v4.0.
- N\
ReactOS —
https://github.com/reactos/reactos Version- Pa—r.
based { LibxleJ Libxml2 (v2.10.0)
detector

Software Security

Review Lecture 8

* Example: Version-based vulnerability detection approach

CVE-2017-8779
Libtirpc (v0.1.11) | CVE-2018-14621
CVE-2018-14622

CVE-2018-14622 Max CVSS

A null-pointer dereference vulnerability was found in libtirpc before version 0.3.3-rc3. The return value of makefd_xprt() EPSS Score 3.60%

was not checked in all instances, which could lead to a crash when the server exhausted the maximum number of Published 2018-08-30
Reactos available file descriptors. A remote attacker could cause an rpc-based application to crash by flooding it with new Updated 2023-02-03

https://github.com/reactos/reactos connections.

Version-

CVE-2018-14621 Max CVSS
based An infinite loop vulnerability was found in libtirpe before version 1.0.2-rc2. With the port to using poll rather than select, EPSS Score 0.20%
detector exhaustion of file descriptors would cause the server to enter an infinite loop, consuming a large amount of CPU time and Published 2018-08-30
denying service to other clients until restarted. Updated 2019-10-09
CVE-2017-8779 % Public exploit Max CVSS
rpcbind through 0.2.4, LIBTIRPC through 1.0.1 and 1.0.2-rc through 1.0.2-rc3, and NTIRPC through 1.4.3 do not consider EPSS Score 55.10%
the maximum RPC data size during memory allocation for XDR strings, which allows remote attackers to cause a denial of Published 2017-05-04
service (memory consumption with no subsequent free) via a crafted UDP packet to port 111, aka rpcbomb. Updated 2019-10-03

Software Security

Review Lecture 8

* Example: Version-based vulnerability detection approach

Libtirpc (v0.1.11)

Fixed by

backporting
security patches!

Reactos reactos/reactos
[LIBTIRPC] Fix CVE-2018-14622 by backporting its fix

https://github.com/reactos/reactos .
Version-
CORE-15005
based
detector

Software Security 6

Review Lecture 8

* Example: Version-based vulnerability detection approach

Libtirpc (v0.1.11) .
P Fixed by
backporting
security patches!
Reactos I"E"ﬂl:tCS."I"E'ECtCS
https://github.com/reactos/reactos Version- [LIBTIRPC] Fix CVE-2018-14622 by backporting its fix
based CORE-15005
detector

Misconfirming that there are
vulnerabilities that do not actually exist
=> False positives

Software Security 7

Review Lecture 8

* Example: Code-based vulnerability detection approach

Code-
based
detector

Software Security 8

Review Lecture 8

* Example: Code-based vulnerability detection approach

1 index aafa3dca2..d02el11328 100644
2 -—- a/ldo.c
3 +++ b/1ldo.c
4 @@ -326,7 +327,13 @@ int luaD_precall (...) {
5 Proto *p = clLvalue(func)->p;
6 - luaD_checkstack(L, p->maxstacksize);
7 - func = restorestack(L, funcr);
8 n = cast_int(L->top - func) - 1;
9 + luaD_checkstack(L, p->maxstacksize);
10 for (; n < p->numparams; n++)
11 setnilvalue(L->top++);
12 - base = (!p->is_vararg)? func + 1:
adjust_varargs(L, p, n);
13 + if (!p->is_vararg) {
14 + func = restorestack(L, funcr);
15 + base = func + 1;
16 + }
Security patch for CVE-2014-5461
(Lua v5.2.3)

Software Security 9

Review Lecture 8

* Example: Code-based vulnerability detection approach

1 index aafa3dca2..d02el11328 100644 1
2 -—- a/ldo.c 2 int luaD_precall (...) {
3 +++ b/1ldo.c 3 Proto *p = cl->p;
4 @@ -326,7 +327,13 @@ int luaD_precall (...) { 4 luaD_checkstack(L, p->maxstacksize);
5 Proto *p = clLvalue(func)->p; 5 func = restorestack(L, funcr);
6 - luaD_checkstack(L, p->maxstacksize); 6 if (!p->is_vararg) { /* no varargs? */
7 - func = restorestack(L, funcr); 7 base = func + 1;
8 n = cast_int(L->top - func) - 1; 8 if (L->top > base + p->numparams)
9 + luaD_checkstack(L, p->maxstacksize); 9 L->top = base + p->numparams;
10 for (; n < p->numparams; n++) 10 }
11 setnilvalue(L->top++);
12 - base = (!p->is_vararg)? func + 1: Propagated vulnerable code in Redis
adjust_varargs(L, p, n);
13 + if (!p->is_vararg) {
14 + func = restorestack(L, funcr);
15 + base = func + 1;
16 + }
Security patch for CVE-2014-5461

(Lua v5.2.3)
Software Security 10

Review Lecture 8

* Example: Code-based vulnerability detection approach

1 index aafa3dca2..d02el11328 100644 1
2 -—- a/ldo.c 2 int luaD_precall (...) {
3 +++ b/1ldo.c 3 Proto *p = cl->p;
4 @@ -326,7 +327,13 @@ int luaD_precall (...) { 4 - luaD_checkstack(L, p->maxstacksize);
5 Proto *p = clLvalue(func)->p; 5 + luaD_checkstack(L, p->maxstacksize + p->numparams);
6 - luaD_checkstack(L, p->maxstacksize); 6 func = restorestack(L, funcr);
7 - func = restorestack(L, funcr); 7 if (!p->is_vararg) { /* no varargs? */
8 n = cast_int(L->top - func) - 1; 8 base = func + 1;
9 + luaD_checkstack(L, p->maxstacksize); 9 if (L->top > base + p->numparams)
10 for (; n < p->numparams; n++) 10 L->top = base + p->numparams;
11 setnilvalue(L->top++); 1 }
12 - base = (!p->is_vararg)? func + 1:

adjust_varargs(L, p, n); A backporting patch for CVE-2014-5461 in Redis
13 + if (!p->is_vararg) {
14 + func = restorestack(L, funcr);
15 + base = func + 1;
16 + }

Security patch for CVE-2014-5461
(Lua v5.2.3)

Software Security 11

Review Lecture 8

* Example: Code-based vulnerability detection approach

1 index aafa3dca2..d02el11328 100644 1
2 -—- a/ldo.c 2 int luaD_precall (...) {
3 +++ b/1ldo.c 3 Proto *p = cl->p;
4 @@ -326,7 +327,13 @@ int luaD_precall (...) { 4 - luaD_checkstack(L, p->maxstacksize);
5 Proto *p = clLvalue(func)->p; 5 + luaD_checkstack(L, p->maxstacksize + p->numparams);
6 - luaD_checkstack(L, p->maxstacksize); 6 func = restorestack(L, funcr);
7 - func = restorestack(L, funcr); 7 if (!p->is_vararg) { /* no varargs? */
8 n = cast_int(L->top - func) - 1; 8 base = func + 1;
9 + luaD_checkstack(L, p->maxstacksize); 9 if (L->top > base + p->numparams)
10 for (; n < p->numparams; n++) 10 L->top = base + p->numparams;
11 setnilvalue(L->top++); 1 }
12 - base = (!p->is_vararg)? func + 1:
adjust_varargs(L, p, n); A backporting patch for CVE-2014-5461 in Redis
13 + if (!p->is_vararg) {
14 + func = restorestack(L, funcr); e L. e .
15 + base = func + 1; If the code has been modified, it is difficult to find the propagated
16 + 3 vulnerability using only the patterns/syntax of the known
Security patch for CVE-2014-5461 vulnerable code
(Lua v5.2.3) => False negatives

Software Security 12

Overview

* Viruses

« Worms

* Trojan horses
* Backdoors

e Ransomware

Software Security 13

Malicious software

 Malicious software (Malware)

= A general term for all software that can have a negative impact on
computers, servers, clients, and computer networks

III

" In many cases, malware can do anything that a“normal” program can do

= Conventional malware

- Viruses and worms

= Ransomware, botnets, backdoor, and other beasts

Software Security 14

Malicious software

* Symptoms that may occur due to malicious programs

Software Security

Category Symptom Category Symptom
Change system settings Hard disk format
Hard disk
Change CMOS Boot sector destruction
Memory reduction Create file
System
System slowdown Delete file
File
Autorun program File corruption
Process termination Modify file
Sending email
Information leak
Network Network slowdown
Open specific port
Sending message

15

Viruses | e

 Computer virus

* Piece of software that infects programs
- A program that can infect other programs or files by modifying them

- It spreads by copying itself to other programs

* When attached to an executable program, a virus can do anything that the
program is permitted to do

- Executes secretly when the host program is run

Software Security 16

Viruses 4y

* Virus phase
1. Dormancy (5 B): inactive until the host program runs
2. Infection (propagation): when the virus spreads
3. Trigger: when the payload is executed
4

. Payload (execution): when the virus actually works

Software Security 17

Viruses

* Pseudo code of a computer virus

Software Security

def virus():

infect ()
if trigger () is true then
payload ()

def infect():
repeat k times:
target = select target()
if no target then
return
infect code (target)

18

Viruses b U

* Virus propagation route
* Phishing (emails)
- Send malware code via an email

= Malicious URL links (included in the body of the email)

- Send malicious URL links via an email

= Semi-automatic download

- Send malicious code when the user goes directly to a malware transmission site or
is redirected to the page through malvertising

Software Security 19

Viruses | e

* Program file viruses
» Most viruses infect executable program files

= How and where virus code is inserted (in the host file) varies?

Software Security 20

Viruses | e

* Program file viruses
» Most viruses infect executable program files

= How and where virus code is inserted (in the host file) varies?

Entry | Normal
point | program

(unshaded) Shifted

down Run virus
(a) (b) | code first (c) (d)

Figure 7.1: Virus strategies for code location. Virus code 1s shaded. (a) Shift and prepend.
(b) Append. (c) Overwrite from top. (d) Overwrite at interior.

Software Security 21

Viruses P

* Program file viruses
(@) Shift and prepend

- Thevirus code is inserted at the front after shifting the original file, which is arranged
to execute after the virus code. This increases the file length

Shifted
down

(a)
Figure 7.1: Virus strategies for code location. Virus code is shaded. (a) Shift and prepend.
(b) Append. (c) Overwrite from top. (d) Overwrite at interior.

Software Security 22

Viruses P

* Program file viruses

(b) Append virus code to end of host file

- The original JUMP target is changed to be the first line of the appended virus code. The
virus code ends by jumping to the originally indicated start-execution point

> Run virus
(b) | code first

Figure 7.1: Virus strategies for code location. Virus code is shaded. (a) Shift and prepend.
(b) Append. (c) Overwrite from top. (d) Overwrite at interior.

Software Security 23

Viruses P

* Program file viruses

(c) Overwrite the host file, starting from the top

- The host program is destroyed (so it should not be critical to the OS’s continuing operation).
This increases the chances that the virus is noticed, and complicates its removal

(c)
Figure 7.1: Virus strategies for code location. Virus code is shaded. (a) Shift and prepend.
(b) Append. (c) Overwrite from top. (d) Overwrite at interior.

Software Security 24

Viruses P

* Program file viruses

(d) Overwrite the host file, starting from some interior point

- A negative side effect is damaging the original program. However an advantage is gained
against virus detection tools that, as an optimization, take shortcuts such as scanning for
viruses only at the start and end of files—this strategy may evade such tools

*—>

(d)
Figure 7.1: Virus strategies for code location. Virus code is shaded. (a) Shift and prepend.
(b) Append. (c) Overwrite from top. (d) Overwrite at interior.

Software Security 25

Viruses | e

* VBA(Visual Basic for Applications) macro viruses

» Malicious code utilizing the macro function* of Microsoft Office applications

- Word, Excel, Access, etc.

= Replicate themselves and cause damage to the system by executing macro code
when an infected document file is opened

Macro function: small programs or scripts used to automate repetitive tasks in Microsoft Office applications

Software Security 26

Viruses g

* VBA(Visual Basic for Applications) macro viruses

= £.g., Love virus
- When the attached VBS script file was opened, it overwrote files on the system and copied
itself to everyone in the user's address book

Subject: ILOVEYOU

kindly check the attached LOVELETTER 3

LOVE-LETTER-FOR-Y
coming from me OU.TXT.vbs

“lOI» |4

= E RN b

27

Software Security

Viruses | e

* Virus detection

* Virus detection problem is undecidable!

- It turns out to be impossible for a single program to correctly detect all viruses

Software Security 28

Viruses 4y

* Virus detection

* Virus detection problem is undecidable!
- It turns out to be impossible for a single program to correctly detect all viruses

- Suppose you claim to hold a virus detector program I/ that, given any program P,
can return a {TRUE, FALSE} result V(P) correctly answering:
* “Is P avirus?”

- Using your program V/, we build the following program instance P*

program P*: if V(P*) then exit, else infect-a-new-target

PAS

Software Security

Viruses - e

* Virus detection

» Let’s see what happensif werunV on P~

program P*: if V(P") then exit, else infect-a-new-target

CASE 1: V(P*)i1s TRUE. That is, V declares that P* is a virus.
In this case, running P*, it simply exits. So P* is actually not a virus.

CASE 2: V(P*)1s FALSE. That is, V declares that P* is not a virus.
In this case running P* will infect a new target. So P~ 1s, 1n truth, a virus.

Software Security 30

Viruses - e

* Virus detection

» Let’s see what happensif werunV on P~

- In both cases, our detector V fails to deliver on the claim of correctly identifying a virus

CASE 1: V(P*)i1s TRUE. That is, V declares that P* is a virus.
In this case, running P*, it simply exits. So P* is actually not a virus.

CASE 2: V(P*)1s FALSE. That is, V declares that P* is not a virus.
In this case running P* will infect a new target. So P~ 1s, 1n truth, a virus.

Software Security 31

Viruses | e

* Virus detection
» Trickery?
- But this is indeed a valid proof
= Even if no program can detect all viruses, the next question is whether useful

programs can detect many, or even some, viruses

- The answer is YES!

- For undecidable problems, it is impossible to create a perfect solution, and a sound or
complete solution is applied depending on the situation

Software Security 32

Viruses | e

* Virus detection in practice

* Malware signatures

- Relatively short byte sequences that uniquely identify a virus

- Signatures for malware active in the field are stored in a dataset, and before any executable is
run by a user, an AV (anti-virus) program intervenes to test it against the dataset using highly
efficient pattern-matching algorithms

= Integrity checker
- Change detection is done by the whitelists of known good hashes of programs

» Behavioral signatures

- Detecting sequence of actions preidentified as suspicious

Software Security 33

Viruses vs worms

* What is the difference? Viruses vs Worms

* The biggest feature of the worm

- It propagates automatically without user interaction

- Exploiting software vulnerabilities

Software Security

Computer virus

Computer worm

loop
remain_dormant_until_host_runs{() ;
propagate_with_user_help();
if trigger_condition_true() then
run-payload();
endloop;

loop
propagate_over_network () ;
if trigger_condition_true() then
run_payload() ;
endloop

34

Viruses vs worms w . g

* What is the difference? Viruses vs Worms

= Aworm is not a program that affects existing programs like a virus

- But it operates on its own as an independent program

* The spread speed is faster than that of a virus

- Causing fatal damage to the network within a short period of time

Software Security 35

Viruses vs worms

 Example worms

(path ()):
path

path path

(target _dir list ()):
target dir list []

target dir_list = target dir_ list

(target _dir list ()):
iteration

iteration iteration

own_path = os.path (_file)

https://shantoroy.com/security/write-a-worm-malware-in-python/

Software Security 36

»
o ‘ 4
Viruses vs worms Ry
» 4
4
 Example worms
* path
():
th(path (None)): * Defines where to start looking for directories
pa
path - path (default is set to the root directory)
(target_dir list ()): target_dir_list

target dir list []) o))
« User can pass a list of initial target directories
target dir_list = target dir_ list
* By defaultitisan empty list

(target _dir list ()): y Pty []
tteration + iteration

iteration iteration . . .
* Define how many instances the worm will

own_path = os.path (_ file) create for each existing file in a directory

https://shantoroy.com/security/write-a-worm-malware-in-python/

Software Security 37

° b 5,127’
Viruses vs worms oy
» 4
4
 Example worms
()
target dir_ list (path)
files_in_current_directory = os (path)
file in files_in_current_directory: Method to list all Directories
file (") * To list all the target directories and subdirectories
absolute path = os.path (path, file) where we want to copy our worm and existing
(absolute path)
files in the directories
os.path (absolute path):
(absolute path)

https://shantoroy.com/security/write-a-worm-malware-in-python/

Software Security 38

Viruses vs worms

 Example worms

()
directory target dir list:
destination = os.path (directory)
shutil (own_path, destination)

Method to Replicate the Worm
» Toreplicate the script itself in all the target directories, we get the absolute path of the
script we are running, and than copy the contents in the destination directories creating a

new hidden file (starts with a dot.) with the same name

https://shantoroy.com/security/write-a-worm-malware-in-python/

Software Security 39

Viruses vs worms

 Example worms

():
directory target dir list:
file list _in dir = os (directory)
file file list in dir:
abs_path os.path (directory, file)
abs_path () os.path (abs_path):
source = abs path
i (iteration):
destination = os.path (directory, (file (1)))
shutil (source, destination)

Method to copy existing files
* Duplicate files the number of times the value we have from the iteration argument

* You can put a large number so that the hard drive will be full soon

https://shantoroy.com/security/write-a-worm-malware-in-python/

Software Security 40

Viruses vs worms w . g

 Example worms

()
(path)
(target _dir_list)
()
()

Method to integrate everything

https://shantoroy.com/security/write-a-worm-malware-in-python/

Software Security 41

Viruses vs worms w . g

 Example worms

(): name
(path) — = :
(target_dir list) current_directory = os path (")
. (S worm (current_directory)
() worm ()

Method to integrate everything

https://shantoroy.com/security/write-a-worm-malware-in-python/

Software Security 42

Trojan Horses

* Trojan horse
= A stealthy malware
= A software that provides malicious functions in addition to its known functions

" |t is not a parasite on an existing normal program, but is already included in the
program from the moment of installation

= (Strictly) Trojan horses differ from computer viruses or worms in that they do not
copy themselves to other files

- However, recently, many malwares are Trojan horses and have both worm and virus
functions, so there is no clear distinction between them

Software Security 43

Backdoor ?]

»o

« Backdoor (trapdoor)

= A secret entry point into a program allowing the attacker to gain access and
bypass the security access procedures

= Any program that does not directly harm the computer, but allows an attacker
to penetrate the computer and take control of the user's computer or introduce
computer threats into the computer system

Software Security 44

Backdoor ?]

»o

« Backdoor (trapdoor)

$username = $ POST[‘username’]
$password = $ POST[“password’]

$login
($username “BACKDOOR”) {
$login
} {
$login ($username, $password)

Software Security 45

Ransomware F{ 5

e Ransomware

= Malware with a specific motive: to extort(& & StLC) users
- Prevent access to files by encryption then ask users to pay for recovery (file lockers)

- Paymentis demanded in hard to trace, non reversible forms such as pre paid cash vouchers
or digital currencies, e.g., Bitcoin

Software Security 46

Ransomware F{ 5

e Ransomware

= Malware with a specific motive: to extort(& & StLC) users
- Prevent access to files by encryption then ask users to pay for recovery (file lockers)

- Paymentis demanded in hard to trace, non reversible forms such as pre paid cash vouchers
or digital currencies, e.g., Bitcoin

* Ransomware may be deployed by any means used for other malware

- E.g., Trojan software installed by users unwittingly or via social engineering

Software Security 47

Ransomware

HOW RANSOMWARE WORKS?
1 O 3

INVOICE

emalL, J user Is Ibrecep Aby DATA DI THE PE - pausom pemand To
ATTACHMENT % BY RANSOMWARE LOCKED UNLOCK YOUR DATA

INFECTED

PEN DRIVE {@\
MALICIOUS A B

WEBSITE

https://medium.com/@rahulsharma0856/ransomware-how-it-works-a-growing-cyber-attack-d976aee62944

Software Security 48

Share

View

1 This PC Local Disk (C:) u
Quick access
& Downloads

Documents

&= Pictures

DSC_4880_4.rryy Ed Sheeran -
I Desktop Shape Of You
.mp3.rryy
mp3
old18
PVR
stop djvu

@ OneDrive - Personal

IMG_0044.JPG.rry
B This PC

y 2028 jpg.rryy
J 3D Objects
Il Desktop
Documents
¥ Downloads
D Music :
Katerina

kk.wav.rryy
& | Pictures

B Videos

2 Local Disk (C:)

B.jpg.rryy

s Local Disk (D:)
- Local Disk (E:)
« New Volume (G:)
«a New Volume (H:)

Nando Reis - A
Letra A.Mp3.rryy

Nando Reis - All

& Network Star.Mp3.rryy
C etworl

Photo0605.pdf.rr piagam

https://www.youtube.com/watch?v=_AYBIQrsRrM

Software Security

IMG_20151122_19

Ransomware

examday34.docx.
myy

Fancy.mpd.rryy Fifth Harmony -
Work From

Home.mp3.rryy

Financiamento
do Carro.xlsx.rryy

Form 1
Baru.doc.rryy

Harold Melvin - |
Miss You
(Sample)

[1972] flp.rryy

IMG_20170819_00

IMG_20170825_18
2603_mix01.jpg.rr

3355_mix01.jpg.rr

IMG-20140806-W
A0007 jpg.rryy

IMG-20141110-W
AD014,jpg.rryy

IMG-20150616-W
A0003.jpg.rryy

IMG-20150901-W
AD006.jpg.rryy

Y yy
Koordinat - KUITANSI LAMPIRAN BA12 Le self.docx.rryy lion air MA_SecA_Group
WAHYAN.xls.rryy LS.doc.rryy mrt.xlsx.rryy ACHMAD.docx.rr 02.docx.rryy
Yy

N
NOTULEN RAPAT

26 Agustus
2019.pdf.rryy

Nom_MONEV
2020.xls.rryy

Nos nyiur+hijau,jpg.rr Open.wav.rryy our vac on
tarifs.docx.rryy

Yy 2018.docx.rryy

Piedra_del_Aguil quadro.mpd.rryy Quelles plantes RAPORT 5A realisasixlsx.rryy Roar.mp3.rryy

| Got You | Feel ~ Imagine Dragons IMG_0035.JPG.rry IMG_0041.JPG.rry
Good_james - BELIEVER y y
brown.mp3.rryy .mp3.rryy

IMG-20171021-W
A0003.jpg.rryy

IMG-20171219-W
AD003.jpg.rryy

Jason Derulo -
Wiggle Ft Snoop
Dogg.mp3.rryy

Juknis Belanja
BBM
2019.doc.rryy

MC Fioti - Bum
Bum Tam
Tam.mp3.rryy

Mets le bon
pronom
relatif.docx.rryy

Mettez au
futur.docx.rryy

Mettez les verbes
de ce texte au
passé
composé.docx...

Panda.mp3.rryy Pemberitahuan PEMBERITAHUA PERINGKAT.xlsx.r
keterlambatan.d N ryy
ocx.rryy PERMOHONAN

PMBYRN.doc.r...

SANTI saran.xlsx - Scan 01.pdf.rryy Scan 02.pdf.rryy

Software Security

Ransomware

¥ wWanna Decryptor 1.0

Ooops, your files have been encrypted!

What Happened to My Computer?

Y our important files are encrypted

Many of your documents, photos, videos, databases and other files are no longer
accessible because they have been encrypted. Maybe you are busy looking for a
. : way to recover your files, but do not waste your time. Nobody can recover your
Payment will be raised on files without our decryption service
5/15/2017 16:25:02

e Can | Recover My Files?

Sure. We guarantee that you can recover all your files safely and easily. (But you __|
have not so enough time.)
You can try to decrypt some of your files for free. Try now by clicking <Decrypt>

Your files will be lost on If you want to decrypt all your files, you need to pay

5/19/2017 16:25:02 You only have 3 days to submit the payment. After that the price will be doubled

Also, if you don't pay in 7 days, you won't be able to recover your files forever,
Time Left

How Do | Pay?

Send $300 worth of bitcoin to this address: ode

152GqZCTcys6eCjDKE3DypCjXiBQWRVEV1 |

| Check Payment

bitcoin

ACCEPTED HERE

Contact Us

Ransomware F{ 5

* Ransomware
» Best practice defenses include reqular backup of all (important) data files
= Even if you pay, it is common for attackers not to provide decryption...
* Do not click on unverified links
» Scan emails for malware

= Vulnerability management

Software Security 51

Next Lecture

* Supply chain security

Software Security 52

