Lecture 10 -
Supply Chain Security

[COSE451] Software Security
Instructor: Seunghoon Woo

Spring 2024

Software Security 1

Overview

* Supply chain security

Software Security 2

Software supply chain

» Software supply chain

» Everything that affects or plays a role in a product or application
throughout the entire software development life cycle (SDLC)

- E.g., custom code (in-house components), open source dependencies/libraries (third-
party components), development tools, infrastructure that make up the CI/CD process
(Continuous Integration/Continuous Deployment), developers, and other related
teams

Software Security 3

Software supply chain

» Software supply chain

/ Development 3
[1
’ :
i (@ O git = |
i '@' Source code Repository i
\ Developers management server update server !

User system

Software Security 4

Software supply chain

» Software supply chain

=Jt X2 J|Et

s=4g 324 St

DI %EEIH E".DI .Jli] HStote-sponsonad hocker,

IjsH X8 22H| 5= " - #Supply Chain, £3rd Party Risk,
YABAIEA ftSalution, #ulnerability,

O} st K&el i iinerabiliy,
Cybersecurity Trends 2024 AIOIH &2t w232 22 sibaidd | 0244 ¥APT, HDPRK, #Threat Actor,
0'01 I-II]I' — #PIEIEIR], #SBOM
Hot 2| M

2024

SUPPLY CHAIN ATTACKS

In case of attacks within the supply

chain of a software or hardware product,

malicious modules or components are

integrated into the product by third-party Artificial Intelligence

e SKEIL{A EQST7 Hafste

(Al) and Machine : nternet of Th}ngs N
Learning (ML) Securing Cloud A (loT) Security 2 2 L:l E EO'. o
Environments o 4 5 H I [— |

providers or suppliers.

Data Privacy \] Al-Powered Ransomware N-linked

. . _ . . . 1AM not yours . - Dark side of Cloud -
| Cyber Attacks takes 0-da Supply Chain Attack
Mobile App Regulations ybe! s 0-day pply Chain Attac
Vulnerabilities QIBx|sS A48t HZclo|E ot Al Ef%‘?! Sefio| Ef2lo] &

Afo|H] 2 Pul gl 32434 3 e 22

Zero Trust s (B
Security Model \ b i “ 2, @
ty i e %uﬂmﬂn

-] | ‘ e —
Incident Response and e == oEos

Threat Hunting

Software Security 5

Software supply chain

* Main types and targets of SW supply chain attacks

Types / Targets Description
Vulnerabilities in OSS Vulnerabilities in OSS can propagate to other software (1-day vulnerabilities)
Third-Party Dependencies Attackers exploit systems by inserting malicious code into third-party software (commercial SDKs, libraries, or components)

Uploading malware with names similar to legitimate software packages to well-known repository hosting services like

Public Repositories . : :
P GitHub, targeting developers searching for open-source code

Intrusion into critical code, repositories, containers, and conversion servers on Cl/CD for development process automation,

Build Systems replacing them with malicious code.

Hijacking Updates Attackers interfere with the software update process or hijack admin rights of update servers to insert malicious code

Private Repositories Intrusion by attackers into code repositories used within a company to insert malicious code

Software Security 6

Software supply chain

* Vulnerabilities in OSS

/ Development 3
[1
’ :
i (@ O git = |
i E’ Source code Repository i
+ (Developers management server update server !

OSS vulnerabilities!

User system

Software Security

Software supply chain

* Vulnerabilities in OSS: Log4shell vulnerability

(% O git

-

.

Repository
update server

Source code
Developers management server J ,

= - - - - o -

Critical vulnerability
existed in log4j

User system

Software Security

Software supply chain

« 3vd party dependencies

(% O git

-

.

Repository
update server

Source code
Developers management server J ,

= - - - - o -

Injecting malicious code
into 3" party software

User system

Software Security

Software supply chain

« 3rd party dependencies: SolarWinds (2021)

/ Development

(% O git

e
- -

«. _ Distrjbution __3

-

.

Repository
update server

Executable
file

Source code
Developers management server J ,

= - - - - o -

SolarWinds: a company that provides IT solution

* Has many big companies as its customers

* The network monitoring solution called “Orion”
has a particularly large number of customers

* A hacking group infected Orion’s update file

User system

Software Security

Software supply chain

« 3rd party dependencies: SolarWinds (2021)

/ Development

|
: I
: I
: I
® |
(@\) @ git = |
- I
i @ Source code RepOSItory :
. { Developers management server update server J 1

SolarWinds and its customers proceeded with
the update without knowing that the update file
was contaminated, which made up to 18,000
companies become potential victims at once

User system

Software Security

Software supply chain

* Public Repositories

@ git

Source code
management server

Repository
update server

= - - - - o -

User system

Software Security

Software supply chain

* Public Repositories: Typosquatting

@ git

.

Repository
update server

Source code
management server J ,

= - - - - o -

OpenSSL (correct)
Open_SSL
Openssl(i)
Open-SSL
OpneSSL
OpenSSSL

User system

Software Security

Software supply chain

* Public Repositories: GitHub manipulation

L
Threat actor creates user downleoads repo, Obfuscated malware hidden
P > 9 , s 8 9) 3282 c N i fil .
malicious repo, hoosts believing it to be WIth;:foifz:?ilcglrl vec:gﬁj‘;hes »
it's ranking in GitHub legitimate y ’

search results.

to trick users into downloading malicious
repositories disguised as popular ones!

Attackers abuse GitHub's search functionality -
-

Malware retrieves the country

)) Persistfence is established code of the machine's IP address
https://thehackernews.com/2024/04/beware-githubs-fake-popularity-scam.html through a scheduled task and downloads encrypted

payloads from specific URLs.

Software Security 14

Software supply chain

 Build systems Compromising build system

and injecting malicious code

(% O git

-

.

Repository
update server

Source code
Developers management server J ,

= - - - - o -

User system

Software Security 15

https://www.securityweek.com/critical-teamcity-vulnerability-exploitation-started-immediately-after-disclosure/

Software supply chain

* Build systems: TeamCity Vulnerability

- e mm e o e e e e e o e e e e e e e e

/ Development vt Build Voo

% O git

.

Executable
file

Source code
Developers management server J ,

TeamCity: Build management and

continuous integration servers

« Two vulnerabilities have been
discovered in Team City, and
attackers are immediately
attempting to exploit them

Software Security

e
- -

Distribution _>

~
-~ -
| —_——— -

Repository
update server

= - - - - o -

User system

16

Software supply chain

Distribution server breach

e Hii i certificate replacement
Hijacking Updates feate repace

|
: I
: I
: I
® |
(@\) @ git = |
- I
i @ Source code RepOSItory :
. { Developers management server update server J 1

User system

Software Security 17

Software supply chain

* Private Repositories

/ Development 3
[1
’ = :
i (@3 O git = |
i '@' Source code Repository i
+ (Developers management server update server)

Compromising Git server
Injecting malicious code

User system

Software Security 18

Assignment li

[COSE451] Software Security
Instructor: Seunghoon Woo

Spring 2024

Software Security 19

Assignment li

* Fixing security vulnerability!
= Goal

1. Verify the impact of vulnerabilities

* Check how the actual vulnerability is triggered!
2. Vulnerability patch practice

* Try to fix the vulnerability!

Software Security 20

Assignment li

* Fixing security vulnerability!
= Steps
1. Check(identify) vulnerable code

2. Trigger the vulnerability
3. Apply security patch
4

Ensure the vulnerability is safely remediated

21

Software Security

* Case 1) Targeting real-world OSS project

Assignment I

» Example: Redis case (v5.0.5, released in 2019)

- We target older versions where vulnerabilities exist

JIKCVE-2015-8080 Detail

Description

Integer overflow in the getnum function in lua_struct.c in Redis 2.8.x before 2.8.24 and 3.0.x before 3.0.6 allows context-dependent attackers

with permission to run Lua code in a Redis session to cause a denial of service (memory corruption and application crash) or possibly bypass

intended sandbox restrictions via a large number, which triggers a stack-based buffer overflow.

https://nvd.nist.gov/vuln/detail/CVE-2015-8080

Software Security

Known Affected Software Configurations switch to cPE2.2

Configuration 1 (hide)

Show Matching CPE(s)*

From (including)
2.8.0
From (including)
3.0.0
From (including)
5.0.0

Up to (excluding)
2.8.24

Up to (excluding)
3.0.6

Up to (excluding)
5.0.8

Assignment I

* Case 1) Targeting real-world OSS project

» Example: Redis case (v5.0.5, released in 2019)

- We target older versions where vulnerabilities exist

http://lists.opensuse.org/opensuse-updates/2016-05/msg00126.html
http://rhn.redhat.com/errata/RHSA-2016-0095.html
http://rhn.redhat.com/errata/RHSA-2016-0096.html
http://rhn.redhat.com/errata/RHSA-2016-0097.html
http://www.debian.org/security/2015/dsa-3412
http://www.openwall.com/lists/oss-security/2015/11/06/2
http://www.openwall.com/lists/oss-security/2015/11/06/4
http://www.securityfocus.com/bid/77507 m
https://github.com/antirez/redis/issues/2855 Exploit] [Patch]
https://raw.githubusercontent.com/antirez/redis/2.8/00-RELEASENOTES
https://raw.githubusercontent.com/antirez/redis/3.0/00-RELEASENOTES
https://security.gentoo.org/glsa/201702-16

Software Security 23

Assignment I

* Case 1) Targeting real-world OSS project

» Example: Redis case (v5.0.5, released in 2019)

- We target older versions where vulnerabilities exist

getnum{) can be tricked into an integer wraparound with a large size number as input, thus returning a negative value.
optsize(}) has no lower bound/negative check; moreover, there is an implicit int -> size_t promotion, yielding a very large

(unsigned) size value.

This, plus further int / size_t confusion in the whole module, results in stack-based buffer overflows in other places,

ag. putinteger() reachable in LUA via struct.pack() .

Simple PoC as follow:

EVAL "struct.pack('>I2147483R48', "18')" @ L

24

Software Security

Assignment I

* Case 1) Targeting real-world OSS project

» Example: Redis case (v5.0.5, released in 2019)
- Build Redis v5.0.5

S sudo make
d src && make all
ake[1]: Entering directory '/home/seunghoonwoo/redis/src’

redis-benchmark
redis-check-rdb
redis-check-aof

Hint: It's a good idea to run 'make test' ;)

Software Security

Assignment I

* Case 1) Targeting real-world OSS project

» Example: Redis case (v5.0.5, released in 2019)
- Execute Redis v5.0.5

5 S ./redis-server
801:C 20 May 2024 20:18:41.131 # 0000000000800 Redis is starting 0000000000800

801:C 20 May 2024 20:18:41.131 # Redis version=5.8.5, bits=64, commit=c696aebd, modified=1, pid=7801, just started

801:C 20 May 2024 20:18:41.131 # Warning: no config file specified, using the default config. In order to specify a config
file use ./fredis-server fpath/to/redis.conf

801:M 20 May 2024 20:18:41.131 * Increased maximum number of open files to 10032 (it was originally set to 1824).

Redis 5.0.5 (c696aebd/1) 64 bit
Running in standalone mode

Port: 6379
PID: 7801

http://redis.io

Software Security

Assignment I

* Case 1) Targeting real-world OSS project

» Example: Redis case (v5.0.5, released in 2019)
- PoC test!

E 5 .J/redis-cli
127.0.0.1:6379>= EVAL "Str‘uct.pack{'::-1214?483643', "16')" @

Could not connect to Redis at 127.0.0.1:6379: Connection refused
not connected=

Software Security 27

Assignment I

* Case 1) Targeting real-world OSS project

» Example: Redis case (v5.0.5, released in 2019)
- PoC test!

E 5 .J/redis-cli
127.0.0.1:6379> EVAL "struct.pack('>I2147483648', '10')" ©
Could not connect to Redis at 127.0.8.1:6379: Connection refused
not connected=

Fast memory test PASSED, however your memory can still be broken. Please run a memory test for several hours if possible.
DUMPING CODE AROUND EIP
: (null) (base: (nil))
e: ./redis-server *:6379 (base 0x5f89ca458000)
-r -p /tmp/dump.hex /tmp/dump.bin
[S objdump --adjust-vma=(nil) -D -b binary -m i386:x86-64 /tmp/dump.bin
== REDIS BUG REPORT END. Make sure to include from START to END. ===
Please report the crash by opening an issue on github:
http://github.com/antirez/redis/issues

Suspect RAM error? Use redis-server --test-memory to verify it.

Segmentation fault (core dumped)

Software Security

Assignment li

* Case 1) Targeting real-world OSS project

» Example: Redis case (v5.0.5, released in 2019)

- Fix the vulnerability

> EEEEE c=p t.c (B
@@ -89,12 +89,1 4 @@ typed H
29 T Head
98
92 tic int getnum {c - *Hf int df
92 tic int getnum (lua_5 ¥, st ch t t d {
93 f (!isdigit(**fmt) number?
o4 return df; /= r Faul e
95 se
96 nt a
a7 o {
98 if (a > (INT_ e || 18 > (INT_| =
99 lual L, "integral overf]
2@ ((FFmt)++)
a1 (=+fmt]))
a?

Software Security 29

Assignment I

* Case 1) Targeting real-world OSS project

» Example: Redis case (v5.0.5, released in 2019)

- Fix the vulnerability

static int getnum (const char **fmt, int df) { SthiEI1gsigii?gffilg§_SF?t?h*h1rf?p§t;ghar *Hfme, int df) o
._. L ! /* no number? */

if {!i_Sdi_gi_t(**lfmt}) 10 '|;_||..-|::-n:e|'_;' B return df; /* return default ||.— e
return df; /* return default value */ else {
else { int a =
int a = 0; do {
do { if (a = (INT_ [1e) |l a*1
a = a*le + *((*fmt)++) - - luaL_error(L, "int L siz
} while (isdigit(**fmt)); a = a*lo + *((*fmt)++) -
return a; } while (isdigit(**fmt));
} return a;

} 1

Software Security

Assignment I

* Case 1) Targeting real-world OSS project

» Example: Redis case (v5.0.5, released in 2019)

- Build again..

S sudo make
d src && make all
ake[1]: Entering directory '/home/seunghoonwoo/redis/src’

redis-benchmark
redis-check-rdb
redis-check-aof

Hint: It's a good idea to run 'make test' ;)

Software Security

Assignment I

* Case 1) Targeting real-world OSS project

» Example: Redis case (v5.0.5, released in 2019)

- PoC test!

Software Security

: S .fsrc/redis-cli
127.0.0.1:6379> EVAL "struct.pack('>I2147483648', '10')" ©

(error) ERR Error running script (call to f 0ba5d6867T8a0d59c13d2eed49dc170ebdb28

89d7): @user script:1: user_script:1: integral size overflow

32

Assignment I

* Case 1) Targeting real-world OSS project

» Example: Redis case (v5.0.5, released in 2019)

- PoC test!

: S .fsrc/redis-cli
127.0.0.1:6379> EVAL "struct.pack('>I2147483648', '10')" ©

(error) ERR Error running script (call to f 0ba5d6867T8a0d59c13d2eed49dc170ebdb28
89d7): @user script:1: user_script:1: integral size overflow

()

Proceed with this vulnerability trigger &
patch process and submit a report

33

Software Security

Assignment li

* Case 1) Targeting real-world OSS project

= CVEs that are easy to detect PoC and trigger/patch the vulnerability
CVE-2018-19210, CVE-2016-10269, CVE-2016-10270, CVE-2017-5225 (LibTIFF)

* LibTIFF vulnerabilities are generally easy to verify
CVE-2019-9169 (Glibc)
CVE-2016-3705 (LibXML2)
CVE-2017-0700 (LibGDX, Godot Engine)
CVE-2018-20330 (LibJPEG)
CVE-2019-17371 (Gif2png)

You can select any CVE (even if it is not displayed on this page)

Software Security 34

Assignment li

* Case 1) Targeting real-world OSS project

= CVEs that are easy to detect PoC and trigger/patch the vulnerability
- CVE-2018-19210, CVE-2016-10269, CVE-2016-10270, CVE-2017-5225 (LibTIFF)

* LibTIFF vulnerabilities are generally easy to verify
CVE-2019-9169 (Glibc)

v d .
_ CVE-2016-3705 (LibXML2) Q6
- CVE-2017-0700 (LibGDX, Godot Engine) -~y

CVE-2018-20330 (LibJPEG)
CVE-2019-17371 (Gif2png)

You can select any CVE (even if it is not displayed on this page)

But this is a big big challenge for some students..

Software Security 35

Assignment li

* Case 2) Targeting toy example

1. Create a small vulnerable software based on vulnerabilities learned in class

- Create a new one exclude code that appeared in class materials or assignments

2. Show that the vulnerability can be triggered
Try patching vulnerabilities (e.g., using input validation)

4. Now you need to show that the vulnerability is not triggered! (i.e., fixed)

Software Security 36

Assignment I

» Case 2) Targeting toy example

| Examp|e #tinclude

int main(int argc, char * argv[]) {
int valid = a;
char stri[8] = TART";
char str2[2];

gets(str2);
if (strncmp(strl, str2,
valid = 1;

printf(fferl tri(%s t %s Lid(%d)\n", strl, str2, valid);

Software Security 37

Assignment I

» Case 2) Targeting toy example

" Example.. rrmmm—

int main(int argc, char * argv[]) {
int valid = a;
char stri[8] = TART";
char str2[2];

gets(str2);
if (strncmp(strl, str2,
valid = 1;

printf(fferl tri(% t %s Lid(%d)\n", strl, str2, valid);

1S . foverflow
BEADINPUTBADINPUT
Bufferl: stri1(BADINPUT), str2(BADINPUTBADINPUT), walid(1l

Software Security

Assignment I

» Case 2) Targeting toy example

#include
#include

= Example..

int main({int argc, char * argv[]) {
int valid = 8;
char stri[g] = TART";
char str2[&];

gets(str2);

if (strlen(strz) > 8){
printf(ERFL \n");
return

3

if (strncmp(strl, str2, 8) == 0)
valid = 1;

printf(fferl tri(%s t %s Lid(%d)\n", strl, str2, valid);

Software Security 39

Assignment I

» Case 2) Targeting toy example

#include
#include

= Example..

int main({int argc, char * argv[]) {
int valid = 8;
char stri[g] =
char str2[&];

gets(str2);

if (strlen(strz) > 8){
printf(\n");
return

3

if (strncmp(stri, str2,
valid =

printf(%S %s %d)\n", stril, str2, valid);

1S . foverflow

TEST

Bufferl: stri(START), str2(TEST), valid(e) ; : i~3 ./overflow
' s . Joverflon BADINPUTBADINPUT

START

Bufferl: stri1(START), str2(START), wvalid(1l)

Software Security

Assignment li

* Scoring

* Due to the significant difference in difficulty between cases 1 and 2, the final
scores will also reflect this difference

- For real-world OSS cases: a maximum of 100 points

- For toy example cases: a maximum of 80 points

Software Security 41

Assignment I

 Due date: June 14t 11:59 PM

* To be submitted:

= Please compress the following three items into a single file (.zip) and submit it
1. Source code with vulnerabilities

- For real-world OSS, only submit the files containing vulnerabilities

Source code with patches applied
3. Report

- As shown in this material, you must include the following information (e.g., using screenshots)
* where the vulnerability was located
* how the vulnerability was triggered
* how it was patched

» confirmation that the vulnerability is no longer triggered

Software Security 42

Next Lecture

* Supply chain security
» Software Bill of Materials (SBOM)

Software Security 43

