Please check your attendance
using Blackboard!

Software Security 1

Lecture 3 - Memory Safety

[COSE451] Software Security
Instructor: Seunghoon Woo

Spring 2024

Software Security 2

Overview

* Memory safety

Software Security 3

Memory safety

* Memory?

* The space in a computer where programs or data can be stored and accessed

* Memory safety?

* Ensuring the integrity of a program’s data structures

- Preventing attackers from reading or writing to memory locations other than those
intended by the programmer

* Preventing problems that arise owing to improper memory management

Software Security 4

Memory safety

* Memory structure

Execute!

D » 00O » 1. Loaded into memory
C/C++
< I > @_ 2. Writes and reads data into/from memory

based on the content written in the code

Software Security)

Memory safety

Low address £/ N\
TEXT
* Memory structure
* The typical memory space allocated DATA
to a program by the operating system
HEAP
STACK
High address \& v

Software Security 6

Memory safety

Low address £/ N\
TEXT
* Memory structure
= TEXT (CODE) DATA
- The area where the executable code is stored
- CPU fetches and processes instructions HEAP
stored in this section one by one
- E.g., conditional statements, functions, constants, ...
STACK
High address _)

Software Security 7

Memory safety

Low address / N\

TEXT

* Memory structure
= DATA DATA

- The area where global and static variables are stored

- Variables typically declared before the main function HEAP
(prior to program execution) that persistin memory
until the program ends

STACK

High address _)

Software Security 8

Memory safety

Low address / N\

TEXT

* Memory structure
= HEAP DATA

- User-managed memory area

- Location where dynamically allocated variables are stored HEAP
* E.g., malloc

- Allocated (loaded) from low addresses to high addresses

STACK

High address _)

Software Security 9

Memory safety

* Memory structure
= STACK

- The area where local variables and parameters
associated with function calls are stored

- Allocated during a function call and deallocated
(destroyed) when the function call is complete

Low address

- Allocated (loaded) from high addresses to low addresses

Software Security

High address

TEXT

DATA

HEAP

STACK

10

Memory safety

Low address £/ N\
TEXT
* Memory structure
* Example DATA
constval
uninitial
initial HEAP
staticval
0O A
}
(argc argv[]) {
arr (() “10)
localvall
localval2
STACK
} High address \& v

Software Security 11

Memory safety

Low address (N\

TEXT
* Memory structure

= Example ‘ DATA

uninitial
initial HEAP

staticval

}

main(argc argv[]) {
arr (()*10)
localvall
localval2

} High address \& v

Software Security 12

Memory safety

Low address £/ N\

TEXT
* Memory structure

= Example DATA

constval

uninitial

initial HEAP

staticval

function() {

main(argc argv[]) {
arr (()*10)
localvall
localval2

} High address \& v

Software Security 13

* Memory structure

Memory safety

» Example

constval
uninitial
initial
staticval

function() {

localval2

Software Security

Low address

High address

TEXT

DATA

HEAP

14

Memory safety

Low address £/ N\
TEXT
* Memory structure
= Example DATA
constval
uninitial
initial HEAP
staticval

function() {

main(argc argv[]) {

- ()F19)
localvall
localval2

High address v

Software Security

Memory safety

* Memory structure

* Example: memory addresses

Software Security

Constant memory address ©x56557008
Uninitialized variable memory address ©x56559014
Initialized variable memory address ©x56559008
Static variable memory address Ox5655900c
Function memory address ©x5655619d
Dynamically-allocated variable memory address ©x5655al1la0
Local variable 1 memory address oxffffdobs
Local variable 2 memory address oxffffdoba

TEXT
DATA
DATA
DATA
TEXT

HEAP

16

Memory safety

 Buffer overflow

= A buffer refers to a temporary storage space
* Inputting data larger than a certain size into a buffer of a fixed size

= OQverflowing the buffer can lead to the followings

(1) Corruption of the memory area
(2) Potential for stealing hidden information

(3) An attacker can execute the desired code

Software Security 17

Memory safety

 Buffer overflow

» Focusing on two types of buffer overflow

- Stack buffer overflow

- Heap buffer overflow

Software Security 18

Memory safety

e Stack buffer overflow

= Security issue that occurs when the memory in the stack area exceeds the
specified range

- E.g.,inserting a value larger than the allocated variable size

X Stack overflow

» A bug caused by excessive expansion of the stack area

- E.g., infinite recursive function calls

Software Security 19

Memory safety

e Stack frame

» The space created to distinguish the stack area specific to each function
when the function is called

- This stores local variables and parameters related to the function

- This is allocated during a function call, and is deallocated when the function ends

Software Security 20

Memory safety

e Stack frame

* Example

Software Security 21

Memory safety

e Stack frame

» Example

main() { >
*SFP: Stack Frame Pointer

(@]

w

c

=

—~

o
_

} High address

Software Security 22

Memory safety

e Stack frame

= Example Buffer
b
a
sum SFP
sum(a b) {
3 b sum RET
}

(@]

wn

c

=

—~

o
_

} High address

Software Security 23

Memory safety

e Stack buffer overflow

* Example

(argc argv[]) {
valid

stri[g]
str2[2]

(str2)
((strl, str2))
valid

(strl, str2, valid)

Software Security 24

Memory safety

e Stack buffer overflow

* Example
(argc argv[]) {
valid
stri[g]
str2[8]
(str2)
((stri, str2))
valid

(

strl, str2, valid)

Software Security

Oxffffd09c
Oxffffd0a0
OxffffdOa4
Oxffffd0a8
OxffffdOac

0000
0000
STAR
TOOO
0000

str2

stri

valid

25

Memory safety

* Stack buffer overflow
= Example: input = “START" (no problem)

main(argc argv[]) {
valid
stri[g]
str2[g]

(str2)
((stri, str2))

valid

(strl, str2, valid)

:S .Joverflow

START
Bufferl: str1(START), str2(START), valid(1l)

Software Security

Oxffffd09c
Oxffffd0a0
OxffffdOa4
Oxffffd0a8
OxffffdOac

STAR
TOOO
STAR
TOOO

str2

stri

valid

Memory safety

é)
o
Stack buffer overflow something wrong)
» Example: input = “EVILINPUTVALUE"
main(argc argv[]) {
valid
stri[g]
str2[g]
(str2) Oxffffd09c EVIL
((str1l, str2, 8)) str2
valid 0xffffd0a0 INPU
(strl, str2, valid) OxffffdOa4 TVA L
} stril
Oxffffd0a8 UEOO
Bufferl: str1(TVALUE), str2(EVILINPUTVALUE), valid(@e) \ Yy

Software Security 27

Memory safety

e Stack buffer overflow

= Example: input = “BADINPUTBADINPUT”

main(argc argv[]) {
valid
stri[g]
str2[g]

(str2)
((stri, str2))
valid

(strl, str2, valid)

1§ .Joverflow

BADINPUTBADINPUT
Bufferl: stri1(BADINPUT), str2(BADINPUTBADINPUT), walid(1)

Software Security

Oxffffd09c
Oxffffd0a0
OxffffdOa4
Oxffffd0a8
OxffffdOac

BADI
NPUT
BADI
NPUT

str2

stri

valid

Memory safety

e Stack buffer overflow

= Possible attack method

- Manipulating RET value
* RET: Memory address value where the command to be executed after the function ends

 After saving the (malicious) code that executes the shell, if we write the memory address to the
RET area, it will be executed after the function ends

Software Security 29

Memory safety

e Stack buffer overflow

= Related CWEs
- CWE-121: Stack-based Buffer Overflow

- CWE-131:Incorrect Calculation of Buffer Size

Software Security 30

Memory safety

» Stack buffer overflow
= Real-world example: WeeChat vulnerability (CVE-2021-40516) m

'}' @@ -293,10 +293,12 @@ relay_websocket_decode_frame (const unsigned char *buffer,
29 293 length frame size = 1;
294 294 length_frame = buffer[index_buffer + 1] & 127;
295 295 index_buffer += 2;
296 4+ if (index_buffer »= buffer_length)
297 4 return @;
29 298 if ((length frame == 126) || (length _frame == 127))
297 299 1
2938 308 length_frame size = (length frame == 126) ? 2 : §;
299 = if (buffer_length < 1 + length_frame_size)
381+ if (index_buffer + length_frame_size > buffer_length)
308 382 return @;
301 383 length_frame = @;
382 384 for (i = 8; i < length_frame_size; i++)

Software Security 31

Memory safety

* Heap buffer overflow

» Occurs when the memory in the heap area exceeds the specified range

» Unlike the stack, the size of heap area cannot be determined at compile time

- Dynamically allocated during the program's execution

* More complicated than the stack-based buffer overflow

Software Security 32

Memory safety

* Heap buffer overflow

* Example

https://itsaessak.tistory.com/114

Software Security

(

argc

bufl = ()
buf2 = ()
(bufl, argv[1l])
(

(

(

argv[1){

bufl)
buf2)

(BUFSIZE)
(BUFSIZE)

(u_long)buf2-(u_long)bufl)

33

Memory safety

* Heap buffer overflow

* Example

Software Security

Dynamic allocation

- puFl ()- ' (BUFSIZE)
buf2 = () (BUFSIZE)

(u_long)buf2-(u_long)bufl)

bufl)
buf2)

A~ S~

34

Memory safety

* Heap buffer overflow

» Example

The address diff between buf1 and buf2
for testing heap buffer overflow
(this value can be found through GDB)

Software Security

main(

argc
bufl
buf2
(bufi

(
(

()
()
argv[1])

argv[1){

buf2)

(BUFSIZE)
(BUFSIZE)

(u_long)buf2-(u_long)bufl)

Memory safety

* Heap buffer overflow

* Example

:S ./heap overflow "Bufl Test”

Address diff: Oxz20
bufli: Bufl Test
buf2z:

Software Security 36

Memory safety

* Heap buffer overflow

» Example

:S ./heap_overflow "Bufl Test"
Address diff: 0x20
bufli: Bufl Test
bufz:

:$./heap_overflow "An example of a heap overflow.. We can manipulate Buf2"

ddress diff: 0x20
bufl: An example of a heap overflow.. We can manipulate Buf2
buf2: We can manipulate Buf2

Software Security 37

Memory safety

* Heap buffer overflow

» Related CWEs
- CWE-122: Heap-based Buffer Overflow

- CWE-131:Incorrect Calculation of Buffer Size

Software Security 38

Next Lecture

* Out-of-bounds (OOB) vulnerabilities
* Defense mechanism against buffer overflow

* Vulnerabilities caused by improper memory management

Software Security 39

