Please check your attendance
using Blackboard!
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Lecture 3 - Memory Safety

[COSE451] Software Security
Instructor: Seunghoon Woo

Spring 2024
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Overview

 Out-of-bounds (OOB) vulnerabilities

* Defense mechanism against buffer overflow / OOB
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Out-of-bounds (OOB) vulnerabilities

* Consider an array
» Length of array: n

» Size of Array: sizeof(elem) * n

array[0] array[1] array[2] array[k] array[n-1]
—_—

sizeof(elem)
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Out-of-bounds (OOB) vulnerabilities

* Address of each element of array

» Calculate using array address, element index, and element data type size

array &array[k]
array[0] array[1] array[2] e array[Kk] e array[n-1]
—
sizeof(elem)
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Out-of-bounds (OOB) vulnerabilities

* Address of each element of array

» Calculate using array address, element index, and element data type size

- &array[k] = array + sizeof(elem) * k

array &array[k]
array[0] array[1] array[2] e array[Kk] e array[n-1]
—
sizeof(elem)
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Out-of-bounds (OOB) vulnerabilities

 Out-of-bounds

= OOB occurs when the index value is negative or outside the length of the array
when referring to an element

- &array[x] = array + sizeof(elem) * x

&ar‘r‘aly[x<0] &array[x>=n]

array[O] array[1] array[2] array[k] array[n-1]
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Out-of-bounds (OOB) vulnerabilities

 Out-of-bounds

* Example
() {
arr[10]
( )
( arr)
( arr[©])
( )
( arr[-1])
( arr[160])
}

https://dreamhack.io/
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Out-of-bounds (OOB) vulnerabilities

 Out-of-bounds

* Example
() {
In Bound: arr[10]
arr: Ox7ffcBea71040
arr[8]: Ox7ffcBea71040 ( )
Out of Bounds: ( arr)

arr[-1]: ex7ffc8ea7103c ( arr[©])
arr[100]: ex7ffcBea711d0

( )
( arr[-1])
( arr[166])

}
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Out-of-bounds (OOB) vulnerabilities

 Out-of-bounds

* Example
() {
In Bound: arr[10]
arr: 0x7ffcBea71040
arr[8]: Ox7ffcBea71040 ( )
Out of Bounds: ( arr)
arr[-1]: ex7ffc8ea7103c ( arr[©])
arr[100]: ex7ffcBea711d0
( )
* The compiler does not issue any warning ( arr[-1])
even though -1 and 100 are used as indices! ( arr[100])
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Out-of-bounds (OOB) vulnerabilities

 Out-of-bounds READ

]
u Example secret_code
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Out-of-bounds (OOB) vulnerabilities

0O A
* Out-of-bounds READ prretihs }
* Example (Mhat do you want to reads")
; (1 \ : )gocs[i])
}
( )
( idx)
(idx ) o
( )
(-1
}
(docs[idx 1)
}
secret_code docs[0] docs[1] docs[2] docs|3]
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Out-of-bounds (OOB) vulnerabilities

01

docs[] {
» Out-of-bounds READ
1dX;
What do you want to read?
| .
Example 1. DATA1 o e e
2. DATA2 ( , i+ 1, docs[i]);
3. DATA3
4. DATA4 (>
: ( idx);
=1
DATA1 (idx ) {
Address docs: Ox7ffcaBc947a0 ( : )s
Address docs[1]: @x7ffcaBc947a8 (1)
Address docs[2]: Ox7ffcaBco47bo
Address docs[-1]: 0x7ffcaBc94798 (docs[idx - 11);
Address docs[-2]: @x7ffca8c94790 '
Address docs[-3]: @x7ffcaB8c94788
Address secret _code pointer: Ox7ffcaBc94798
Ox7ftfca8c94798 Ox7fftca8c947a8
secret_code
docs[0] docs[1] docs[2] docs[3]
(=docs[-1])
Ox7ffca8c947a0 Ox7ftfca8c947bo
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Out-of-bounds (OOB) vulnerabilities

01

 Out-of-bounds READ s iy }

idx

What do you want to read? E i i i) { )

1. DATA1 ( i docs[i])
2. DATA2 }
3. DATA3 (>

* Example

4. DATA4

= @ (idx ) |

SECRET DATA (() )
}

(docs[idx 1)

Ox7ffca8c94798 Ox7ffca8c947a8

secret_code
(=docs[-1])

Ox7ffca8c947a0 Ox7ffca8c947bo

docs|[0] docs[1] docs[2] docs[3]
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Out-of-bounds (OOB) vulnerabilities

e Out-of-bounds WRITE {

attending;
name;

= Example age;

Student stu[19];
isAdmin;
() 4

idx;

ts( )1
tf( ) -

stu[idx ].attending

(isAdmin) £ ( 35
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Out-of-bounds (OOB) vulnerabilities

* Out-of-bounds WRITE stuant ¢
m Example ) agzr:ne:
- Student : 24bytes (in 64bit) | Student stu[10];
- Stu : 10x 24bytes (in 64bit) ECH
O { o
ts( )3
tf( )s
f( , &idx);

stu[idx ].attending

(isAdmin) £ ( 35
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Out-of-bounds (OOB) vulnerabilities

e Out-of-bounds WRITE

* Example

- Student : 24bytes (in 64bit)
- Stu : 10x24bytes (in 64bit)
- Address of isAdmin = Address of stu + 240 bytes

i var
11 variables

Non-debugging

i var
11 variables

Software Security

isAdmin
matching regular expression "isAdmin":

symbols:
isAdmin
stu
matching regular expression "stu":

symbols:
stu
0x4130-0x4040

{
attending;
name;
age;

Student stu[19];

isAdmin;
() £
idx;
uts sent?");
intf( T
canf( , &idx);

stu[idx ].attending

(isAdmin) printf(




Out-of-bounds (OOB) vulnerabilities

e Out-of-bounds WRITE {

attending;
name;

= Example age;
- Student : 24bytes (in 64bit)

Student stu[19];

- Stu : 10x24bytes (in 64bit) S
() 4
- Address of isAdmin = Address of stu + 240 bytes idx;
* If we refer to the index 10 of stu (11" index), i 4
we can manipulate isAdmin tf( y;
7( . &idx);

stu[idx ].attending

(isAdmin) £ ( 35
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Out-of-bounds (OOB) vulnerabilities

e Out-of-bounds WRITE {

attending;
name;

= Example age;

Student stu[19];
isAdmin;
() 4

idx;

ts( )1
tf( ) -

stu[idx ].attending

(isAdmin) £ ( 35
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Out-of-bounds (OOB) vulnerabilities

e Out-of-bounds WRITE {

attending;
name;
* Example age;
};
Student stu[19];
isAdmin;
1S .foob write ex
Who is present?
{1-18)= 11 0O A 5
ccess granted. 1dx;
print (int)isAdmin
$1 =1 uts( )
orintf( b
11 ( , &idx);

stu[idx ].attending

(isAdmin) printf( 15
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Out-of-bounds (OOB) vulnerabilities

2023 CWE Top 25 Most Dangerous Software Weaknesses

‘ Top 25 Home ‘ ‘Share Via:ﬁ| | View in table format | | Key Insights | | Methodology

Out-of-bounds Write
CWE-787 | CVEs in KEV: 70 | Rank Last Year: 1

Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')
CWE-79 | CVEs in KEV: 4 | Rank Last Year: 2

Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')
CWE-89 | CVEs in KEV: 6 | Rank Last Year: 3

Use After Free
CWE-416 | CVEs in KEV: 44 | Rank Last Year: 7 (up 3) A

Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')
CWE-78 | CVEs in KEV: 23 | Rank Last Year: 6 (up 1) A

Improper Input Validation
CWE-20 | CVEs in KEV: 35 | Rank Last Year: 4 (down 2) ¥

Out-of-bounds Read
CWE-125 | CVEs in KEV: 2 | Rank Last Year: 5 (down 2) ¥
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Out-of-bounds (OOB) vulnerabilities

* Real-world out-of-bounds examples
= CVE-2023-4735 (discovered in VIM)

v : 2 Hn src/ops.c L[,:]

X @@ -2919,7 +2919,7 @@ do_addsub(
2919 2919 for (bit = bits; bit > ©; bit--)
2920 2920 if ((n >> (bit - 1)) & ©x1) break;
2921 2921
2922 - for (1 = ©; bit > ©; bit--)

2922 4+ for (1 = ©; bit > © & i < (NUMBUFLEN - 1); bit--)

2923 2923 buf2[i++] = ((n >> (bit - 1)) & @x1) ? '1' : '@';

Software Security 22




Memory safety

* How to defense overflow attacks / out-of-bounds vulnerabilities?

* One of the most effective way is to check the inputs / the size condition of buffers

() {
buf| ]

index

( index)

( buf[index])
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Memory safety

* How to defense overflow attacks?

» Choosing a programming language that is relatively safe in memory
management
- C/C++:Dangerous
- Java/C#/Python: Safe

- However, C/C++ have significant benefits in memory optimization and performance

 Itisimportant to choose the language based on the intended use case
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Memory safety

* How to defense overflow attacks?

= Secure-coding / vulnerability detection
- Avoiding the use of risky functions (e.g., strcpy)
- Proactively utilizing exception handling statements

- Using static/dynamic analysis tools
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Memory safety

* How to defense overflow attacks?

* The root cause of the problem

1. The return address (RET) could be covered with a random address
2. The address of the buffer where the user could input data was known

3. The buffer was executable

Software Security 26




Memory safety

* How to defense overflow attacks?

» Using stack protection mechanisms
- CANARY

* |nsert random data between the buffer and SFP to detect buffer overflow

I
/

Canary

II
\&
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Memory safety

* How to defense overflow attacks?

» Using stack protection mechanisms
- CANARY

* When a buffer overflow occurs (e.g., modifying RET), the canary value is also changed

* This allows the identification of buffer overflow attacks

I
/

» Canary

II
\&
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Memory safety

* How to defense overflow attacks?

» Using stack protection mechanisms
- CANARY

* Because the attacker should not predict the canary, random values are used

» There are also disadvantages in that the system to be protected must be recompiled
and stack frame analysis becomes more complicated
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Memory safety

1 $ gcc addr.c -o addr -1dL -no-pie -fno-PIE
* How to defense overflow attacks? 2
3 $ ./addr
o . 4 buf_ k addr: Ox7ffcd3fcffch
= Using Address Space Layout Randomize (ASLR) ) lj;j;j:j e ey
6 libc_base addr: Ox7fd7504cdBBOB
- Randomly changes memory addresses 7 printf addr: 0x7fd750531F0
. 8 main addr: Ox40B0667
when running a program 9§ ./addr
. 10 buf_stack addr: 0x7ffe4c661f90
- Attacker needs to decide where to place 11 bof nems ddn: Gx1760260

12 Tlibc_base addr: Ox7ffad%elbboo
13 printf addr: Ox7ffad%e7ff0O0

14 main addr: Ox400667

15 $ ./addr

for attackers to identify memory addresses 16 buf_stack addr: Ox7ffcf2386d80
17 buf_heap addr: Ox840260

18 Tlibc_base addr: Ox7fed2664b000
19 printf addr: Ox7fed266affoo

20 main addr: Ox400667

executable code

* Prevents buffer overflows by making it difficult
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Memory safety

* How to defense overflow attacks?
= Using NX-Bit (Never eXecute Bit)

Also known as XD (eXecute disable) or DEP (Data Execution Prevention)

A hardware-based security feature implemented in modern computer processors

The Processor distinguishes between executable and non-executable areas of memory

* All memory regions designated with the NX-Bit are used for storage and cannot be executed

Even if attackers inject malicious code into the memory, the processor prevents it from
being executed as instructions
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Memory safety

* How to defense overflow attacks?

» Such protection mechanisms are applied in recent versions of Ubuntu

:5 . foverflow _guarded
BADINPUTBADINPUT

Bufferl: stri1(START), str2(BADINPUTBADINPUT), valid(®)
*** ctack smashing detected ***: terminated
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Next Lecture

* Memory safety: memory leak, use after free, double free

* Access controls
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