Please check your attendance
using Blackboard!

Software Security 1

Lecture 3 - Memory Safety

[COSE451] Software Security
Instructor: Seunghoon Woo

Spring 2024

Software Security 2

Overview

 Out-of-bounds (OOB) vulnerabilities

* Defense mechanism against buffer overflow / OOB

Software Security 3

Out-of-bounds (OOB) vulnerabilities

* Consider an array
» Length of array: n

» Size of Array: sizeof(elem) * n

array[0] array[1] array[2] array[k] array[n-1]
—_—

sizeof(elem)

Software Security 4

Out-of-bounds (OOB) vulnerabilities

* Address of each element of array

» Calculate using array address, element index, and element data type size

array &array[k]
array[0] array[1] array[2] e array[Kk] e array[n-1]
—
sizeof(elem)

Software Security)

Out-of-bounds (OOB) vulnerabilities

* Address of each element of array

» Calculate using array address, element index, and element data type size

- &array[k] = array + sizeof(elem) * k

array &array[k]
array[0] array[1] array[2] e array[Kk] e array[n-1]
—
sizeof(elem)

Software Security 6

Out-of-bounds (OOB) vulnerabilities

 Out-of-bounds

= OOB occurs when the index value is negative or outside the length of the array
when referring to an element

- &array[x] = array + sizeof(elem) * x

&ar‘r‘aly[x<0] &array[x>=n]

array[O] array[1] array[2] array[k] array[n-1]

Software Security 7

Out-of-bounds (OOB) vulnerabilities

 Out-of-bounds

* Example
() {
arr[10]
()
(arr)
(arr[©])
()
(arr[-1])
(arr[160])
}

https://dreamhack.io/

Software Security 8

Out-of-bounds (OOB) vulnerabilities

 Out-of-bounds

* Example
() {
In Bound: arr[10]
arr: Ox7ffcBea71040
arr[8]: Ox7ffcBea71040 ()
Out of Bounds: (arr)

arr[-1]: ex7ffc8ea7103c (arr[©])
arr[100]: ex7ffcBea711d0

()
(arr[-1])
(arr[166])

}

Software Security 9

Out-of-bounds (OOB) vulnerabilities

 Out-of-bounds

* Example
() {
In Bound: arr[10]
arr: 0x7ffcBea71040
arr[8]: Ox7ffcBea71040 ()
Out of Bounds: (arr)
arr[-1]: ex7ffc8ea7103c (arr[©])
arr[100]: ex7ffcBea711d0
()
* The compiler does not issue any warning (arr[-1])
even though -1 and 100 are used as indices! (arr[100])

Software Security 10

Out-of-bounds (OOB) vulnerabilities

 Out-of-bounds READ

]
u Example secret_code

Software Security 11

Out-of-bounds (OOB) vulnerabilities

0O A
* Out-of-bounds READ prretihs }
* Example (Mhat do you want to reads")
; (1 \ :)gocs[i])
}
()
(idx)
(idx) o
()
(-1
}
(docs[idx 1)
}
secret_code docs[0] docs[1] docs[2] docs|3]

Software Security 12

Out-of-bounds (OOB) vulnerabilities

01

docs[] {
» Out-of-bounds READ
1dX;
What do you want to read?
| .
Example 1. DATA1 o e e
2. DATA2 (, i+ 1, docs[i]);
3. DATA3
4. DATA4 (>
: (idx);
=1
DATA1 (idx) {
Address docs: Ox7ffcaBc947a0 (:)s
Address docs[1]: @x7ffcaBc947a8 (1)
Address docs[2]: Ox7ffcaBco47bo
Address docs[-1]: 0x7ffcaBc94798 (docs[idx - 11);
Address docs[-2]: @x7ffca8c94790 '
Address docs[-3]: @x7ffcaB8c94788
Address secret _code pointer: Ox7ffcaBc94798
Ox7ftfca8c94798 Ox7fftca8c947a8
secret_code
docs[0] docs[1] docs[2] docs[3]
(=docs[-1])
Ox7ffca8c947a0 Ox7ftfca8c947bo

Software Security

Out-of-bounds (OOB) vulnerabilities

01

 Out-of-bounds READ s iy }

idx

What do you want to read? E i i i) {)

1. DATA1 (i docs[i])
2. DATA2 }
3. DATA3 (>

* Example

4. DATA4

= @ (idx) |

SECRET DATA (())
}

(docs[idx 1)

Ox7ffca8c94798 Ox7ffca8c947a8

secret_code
(=docs[-1])

Ox7ffca8c947a0 Ox7ffca8c947bo

docs|[0] docs[1] docs[2] docs[3]

Software Security 14

Out-of-bounds (OOB) vulnerabilities

e Out-of-bounds WRITE {

attending;
name;

= Example age;

Student stu[19];
isAdmin;
() 4

idx;

ts()1
tf() -

stu[idx].attending

(isAdmin) £ (35

Software Security 15

Out-of-bounds (OOB) vulnerabilities

* Out-of-bounds WRITE stuant ¢
m Example) agzr:ne:
- Student : 24bytes (in 64bit) | Student stu[10];
- Stu : 10x 24bytes (in 64bit) ECH
O { o
ts()3
tf()s
f(, &idx);

stu[idx].attending

(isAdmin) £ (35

Software Security 16

Out-of-bounds (OOB) vulnerabilities

e Out-of-bounds WRITE

* Example

- Student : 24bytes (in 64bit)
- Stu : 10x24bytes (in 64bit)
- Address of isAdmin = Address of stu + 240 bytes

i var
11 variables

Non-debugging

i var
11 variables

Software Security

isAdmin
matching regular expression "isAdmin":

symbols:
isAdmin
stu
matching regular expression "stu":

symbols:
stu
0x4130-0x4040

{
attending;
name;
age;

Student stu[19];

isAdmin;
() £
idx;
uts sent?");
intf(T
canf(, &idx);

stu[idx].attending

(isAdmin) printf(

Out-of-bounds (OOB) vulnerabilities

e Out-of-bounds WRITE {

attending;
name;

= Example age;
- Student : 24bytes (in 64bit)

Student stu[19];

- Stu : 10x24bytes (in 64bit) S
() 4
- Address of isAdmin = Address of stu + 240 bytes idx;
* If we refer to the index 10 of stu (11" index), i 4
we can manipulate isAdmin tf(y;
7(. &idx);

stu[idx].attending

(isAdmin) £ (35

Software Security 18

Out-of-bounds (OOB) vulnerabilities

e Out-of-bounds WRITE {

attending;
name;

= Example age;

Student stu[19];
isAdmin;
() 4

idx;

ts()1
tf() -

stu[idx].attending

(isAdmin) £ (35

Software Security 19

Out-of-bounds (OOB) vulnerabilities

e Out-of-bounds WRITE {

attending;
name;
* Example age;
};
Student stu[19];
isAdmin;
1S .foob write ex
Who is present?
{1-18)= 11 0O A 5
ccess granted. 1dx;
print (int)isAdmin
$1 =1 uts()
orintf(b
11 (, &idx);

stu[idx].attending

(isAdmin) printf(15

Software Security 20

Out-of-bounds (OOB) vulnerabilities

2023 CWE Top 25 Most Dangerous Software Weaknesses

‘ Top 25 Home ‘ ‘Share Via:ﬁ| | View in table format | | Key Insights | | Methodology

Out-of-bounds Write
CWE-787 | CVEs in KEV: 70 | Rank Last Year: 1

Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')
CWE-79 | CVEs in KEV: 4 | Rank Last Year: 2

Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')
CWE-89 | CVEs in KEV: 6 | Rank Last Year: 3

Use After Free
CWE-416 | CVEs in KEV: 44 | Rank Last Year: 7 (up 3) A

Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')
CWE-78 | CVEs in KEV: 23 | Rank Last Year: 6 (up 1) A

Improper Input Validation
CWE-20 | CVEs in KEV: 35 | Rank Last Year: 4 (down 2) ¥

Out-of-bounds Read
CWE-125 | CVEs in KEV: 2 | Rank Last Year: 5 (down 2) ¥

Software Security 21

Out-of-bounds (OOB) vulnerabilities

* Real-world out-of-bounds examples
= CVE-2023-4735 (discovered in VIM)

v : 2 Hn src/ops.c L[,:]

X @@ -2919,7 +2919,7 @@ do_addsub(
2919 2919 for (bit = bits; bit > ©; bit--)
2920 2920 if ((n >> (bit - 1)) & ©x1) break;
2921 2921
2922 - for (1 = ©; bit > ©; bit--)

2922 4+ for (1 = ©; bit > © & i < (NUMBUFLEN - 1); bit--)

2923 2923 buf2[i++] = ((n >> (bit - 1)) & @x1) ? '1' : '@';

Software Security 22

Memory safety

* How to defense overflow attacks / out-of-bounds vulnerabilities?

* One of the most effective way is to check the inputs / the size condition of buffers

() {
buf|]

index

(index)

(buf[index])

Software Security 23

Memory safety

* How to defense overflow attacks?

» Choosing a programming language that is relatively safe in memory
management
- C/C++:Dangerous
- Java/C#/Python: Safe

- However, C/C++ have significant benefits in memory optimization and performance

 Itisimportant to choose the language based on the intended use case

Software Security 24

Memory safety

* How to defense overflow attacks?

= Secure-coding / vulnerability detection
- Avoiding the use of risky functions (e.g., strcpy)
- Proactively utilizing exception handling statements

- Using static/dynamic analysis tools

Software Security 25

Memory safety

* How to defense overflow attacks?

* The root cause of the problem

1. The return address (RET) could be covered with a random address
2. The address of the buffer where the user could input data was known

3. The buffer was executable

Software Security 26

Memory safety

* How to defense overflow attacks?

» Using stack protection mechanisms
- CANARY

* |nsert random data between the buffer and SFP to detect buffer overflow

I
/

Canary

II
\&

Software Security

Memory safety

* How to defense overflow attacks?

» Using stack protection mechanisms
- CANARY

* When a buffer overflow occurs (e.g., modifying RET), the canary value is also changed

* This allows the identification of buffer overflow attacks

I
/

» Canary

II
\&

Software Security

Memory safety

* How to defense overflow attacks?

» Using stack protection mechanisms
- CANARY

* Because the attacker should not predict the canary, random values are used

» There are also disadvantages in that the system to be protected must be recompiled
and stack frame analysis becomes more complicated

Software Security

Memory safety

1 $ gcc addr.c -o addr -1dL -no-pie -fno-PIE
* How to defense overflow attacks? 2
3 $./addr
o . 4 buf_ k addr: Ox7ffcd3fcffch
= Using Address Space Layout Randomize (ASLR)) lj;j;j:j e ey
6 libc_base addr: Ox7fd7504cdBBOB
- Randomly changes memory addresses 7 printf addr: 0x7fd750531F0
. 8 main addr: Ox40B0667
when running a program 9§ ./addr
. 10 buf_stack addr: 0x7ffe4c661f90
- Attacker needs to decide where to place 11 bof nems ddn: Gx1760260

12 Tlibc_base addr: Ox7ffad%elbboo
13 printf addr: Ox7ffad%e7ff0O0

14 main addr: Ox400667

15 $./addr

for attackers to identify memory addresses 16 buf_stack addr: Ox7ffcf2386d80
17 buf_heap addr: Ox840260

18 Tlibc_base addr: Ox7fed2664b000
19 printf addr: Ox7fed266affoo

20 main addr: Ox400667

executable code

* Prevents buffer overflows by making it difficult

Software Security 30

Memory safety

* How to defense overflow attacks?
= Using NX-Bit (Never eXecute Bit)

Also known as XD (eXecute disable) or DEP (Data Execution Prevention)

A hardware-based security feature implemented in modern computer processors

The Processor distinguishes between executable and non-executable areas of memory

* All memory regions designated with the NX-Bit are used for storage and cannot be executed

Even if attackers inject malicious code into the memory, the processor prevents it from
being executed as instructions

Software Security 31

Memory safety

* How to defense overflow attacks?

» Such protection mechanisms are applied in recent versions of Ubuntu

:5 . foverflow _guarded
BADINPUTBADINPUT

Bufferl: stri1(START), str2(BADINPUTBADINPUT), valid(®)
*** ctack smashing detected ***: terminated

Software Security 32

Next Lecture

* Memory safety: memory leak, use after free, double free

* Access controls

Software Security 33

