Please check your attendance
using Blackboard!

Software Security 1

Lecture 3 - Memory Safety

[COSE451] Software Security
Instructor: Seunghoon Woo

Spring 2024

Software Security 2

Overview

* Vulnerabilities caused by improper memory management

* Access controls

Software Security 3

Memory safety

* Vulnerabilities caused by improper memory management

= When we dynamically allocate memory in C/C++, it is essential to deallocate it
- e, Allocation Deallocation
(e.g., malloc) (e.q., free)

= |f this is not done correctly, vulnerabilities can occur

(1) Memory Leak
(2) Double Free
(3) Use After Free

Software Security 4

Memory safety

(1) Memory Leak [

Allocation]

= Memory allocated but not deallocated (freed) (e.9, malloc)

()

Software Security)

Memory safety

Allocation Deallocation Deallocation
(2) Double Free (e.g, mallod) (e.g. free) (e.g. free)

= Attempting to deallocate memory that has already been deallocated

0

ptr = () (SIZE)

(abrt) {
(ptr)

(ptr)

¥

Software Security 6

Memory safety

[Allocation H Deallocation HAccess deallocated]
I L f
(3) Use After Free (.9 mallod (eg. free) memory

= Attempting to access deallocated memory

0

ptr = () (SIZE)

(err) {
abrt

(ptr)

(abrt) {
(ptr)

}
}

Software Security ;

Memory safety

* These vulnerabilities are related to memory management and are
dangerous problems that threaten the stability and security
= Memory corruption
* Data leak
= Memory manipulation
" Decrease system performance

* Shell code injection

Software Security 8

Memory safety

* |t seems that the issue can be easily resolved by simply mapping
allocation (e.g., malloc) and free (e.g., free) statements correctly

Software Security 9

Memory safety

* |t seems that the issue can be easily resolved by simply mapping
allocation (e.g., malloc) and free (e.g., free) statements correctly
= FALSE

* Many developers are still fighting with this issue

Software Security 10

Memory safety

 Example: Linux kernel case

* Original code

- Canyou find where the problem is?

Lee, Junhee; Hong, Seongjoon; Oh, Hakjoo. “MemFix: Static Analysis-Based Repair of Memory Deallocation Errors for C,” Proceedings of the 2018
26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. 2018. p. 95-106.

Software Security

in = malloc(1);
out = malloc(1);

. // use in, out
free(out);
free(in);

in = malloc(2);
if (in == NULL) {

goto err;

out = malloc(2);
1f (out == NULL) {
free(in);

goto err;

. // use 1in, out
err:

free(in);

free(out);

return;

11

 Example: Linux kernel case
* First patch (2007.09)

- The existing problem was solved,
but the root cause was not resolved

Software Security

Memory

10

11

13

14

15

16

18

19

21

in = malloc(1);
out = malloc(1);

. // use in, out
free(out);
free(in);

in = malloc(2);
if (in == NULL) {

goto err;

}

out = malloc(2);
1f (out == NULL) {
free(in);

goto err;
}
. // use 1in, out
err:
free(in);
free(out);
return;

11

12

13

14

15

16

21

22

23

in = malloc(1);
out = malloc(1);

free(out);
free(in);

in = malloc(2);

if (in == NULL) {
out = NULL; // +
goto err;

¥

out = malloc(2);
if (out == NULL) {
free(in);
in = NULL; // +
goto err;

}

err:
free(in);
free(out);
return;

12

 Example: Linux kernel case
» Second patch (2008. 06)

- Canyou find where the problem is?

Software Security

Memory

in = malloc(1);
out = malloc(1);

free(out);
free(in);

in = malloc(2);

if (in == NULL) {
out = NULL; // +
goto err;

¥

out = malloc(2);
if (out == NULL) {
free(in);
in = NULL; // +
goto err;

}

err:
free(in);
free(out);
return;

in = malloc(1);
out = malloc(1);
/] -
free(in);
in = malloc(2);
if (in == NULL) {
out = NULL;
goto err;
}
free(out); // +
out = malloc(2);
if (out == NULL) {
free(in);
in = NULL;
goto err;

}

err:
free(in);
free(out);

return;

13

1 1n = malloc(1); 1 1n = malloc(1);

2 out = malloc(1); 2> out = malloc(1);
Memory. -
v 1/ - 1+ free(out); // +
5 free(in); 5 free(in);
& & out = NULL; // +
7 in = malloc(2); 7 1n = malloc(2);
 Example: Linux kernel case s if (in == NULL) { s if (in == NULL) {

9 out = NULL; 9 out = NULL;

» Third patch (2008. 07) o goto err; o goto err;
11 o}

- The existing problem was solved, 5 iree(wt); /] + » w /) -
but the code becomes even more 13 out = malloc(2); 5 out = malloc(2);
redundant and confusable 4 AT (out = NAL) { ¢ AF Cout == LD A
15 free(in); 15 free(in);
16 in = NULL; 16 in = NULL;
17 goto err; 17 goto err;
15} 18}
19 19
20 err: 20 err:
21 free(in); 21 free(in);
free(out); 22 free(out);

23 return; 23 return;

Software Security 14

Memory

 Example: Linux kernel case
* Third patch (2008. 07)

- The existing problem was solved,
but the code becomes even more
redundant and confusable

Software Security

1 1n = malloc(1);
out = malloc(1);

a [/ -

s free(in);

7 1n = malloc(2);

s 1f (in == NULL) {

9 out = NULL;
10 goto err;

13 out = malloc(2);
14 if (out == NULL) {

15 free(in);

16 in = NULL;
17 goto err;

15}

19

20 err:

21 free(in);

22 free(out);
23 return;

1 1n = malloc(1);
> out = malloc(1);

1+ free(out); // +

s free(in);

& out = NULL; // +
7 1n = malloc(2);

s 1f (in == NULL) {
9 out = NULL;

10 goto err;

13 out = malloc(2);
1w 1f (out == NULL) {

15 free(in);

16 in = NULL;
17 goto err;

18}

19

20 err:

21 free(in);

22 free(out);
23 return;

15

Lecture 4 - Access Controls

[COSE451] Software Security
Instructor: Seunghoon Woo

Spring 2024

Software Security 16

Access Controls

* A process by which use of system resources is regulated according to a
security policy and is permitted only by authorized entities

* The process of determining whether a resource is available in a system

[{=— —

Authentication Authorization

Who you are What you can do

» Whereas authorization policies define what an individual identity or group may access,
access controls are the methods we use to enforce such policies

Software Security 17

Access Controls

Authorization

database

A

.
>

Security administrator

Authentication Access control

1

[}

]

1

[}

]

1

[}

Access N

»| control +——

]

1

[}

]

1

[}

]

1

[}

1

Authentication
function

function

O

System resources

\

User

Software Security

Access Controls

* The central element of computer security

» To prevent unauthorized users from gaining access to resources,
» To prevent legitimate users from accessing resources in an unauthorized manner

* To enable legitimate users to access resources in an authorized manner

Software Security 19

Access Controls

* The central element of computer security

» To prevent unauthorized users from gaining access to resources,

» To prevent legitimate users from accessing resources in an unauthorized manner

* To enable legitimate users to access resources in an authorized manner

|

owner's
permissions

group

permissions

rwx 1 sandip

owner

other

permissions

20 Feb

|

owner's
group

|

File type

Software Security

https://www.learn2torials.com/a/linux-access-control-list

20

Access Controls

 Basic elements of access control
1. Subject

- An entity capable of accessing objects

- E.g., owner, group, world

2. Object

- A resource to which access is controlled
- E.g., page, file, directory, message, program

3. Accessright
- Describes the way in which a subject may access an object

- E.g., read, write, execute, delete, create, search

Software Security 21

Access Controls

* Access controls in Unix file system

* File permissions with the user-group-others model
- User
* Indicating the userid (UID) of the file owner

- Group
* Indicating the groupid (GID) of the file

- Others
* Public

Software Security 22

Access Controls

* Access controls in Unix file system

* Three protection bits for each of user, group, and others

1. Read (R)
* The file contents can be read
2. Write (W)

* The file contents can be modified

3. Execute (X)

* A file can be run

Software Security 23

Access Controls

* Access controls in Unix file system

= Display for file permission: 10-char string

User Group Others
R W X R W X R W X
rwx 1 sandip 20 Feb

| | |

owner's owner owner's
permissions group

Type

File type

group
permissions

other
permissions

Software Security 24

Access Controls

* Access controls in Unix file system

Symbolic Numeric

notation notation Description
---------- 0000 Nno permissions
-FWX------ 0700 read, write, & execute only for owner
-FWXIWX--- 0770 read, write, & execute for owner and group
-rWXIrWXrwx 0777 read, write, & execute for owner, group and others
-—=X--X--X 0111 execute
--W--W--W- 0222 write
--WX-WX-WX 0333 write & execute
-r--r--r-- 0444 read
-r-Xr-xr-x 0555 read & execute
-rW-rw-rw- 0666 read & write
-rWXr----- 0740 owner can read, write, & execute; group can only read; others have no permissions

Software Security 25

Access Controls

* Access control policies
1. Discretionary Access Control (DAC)
2. Mandatory Access Control (MAC)
3. Role-Based Access Control (RBAC)
4. Attribute-Based Access Control (ABAC)

Software Security 26

Access Controls

1. Discretionary Access Control (DAC)
* Traditional method of implementing access control

= Owner or administrator of resources grants access permissions to other users
without the intervention of a security manager

» Controls access based on the (1) identity of the requestor and on (2) access rules
stating what requestors are (or are not) allowed to do

= Easy to implement and simple to use, but not highly secure

Software Security 27

Access Controls

1. Discretionary Access Control (DAC)

= Access matrix

OBJECTS
File 1 File 2 File 3 File 4
Own Own
User A Read Read
Write Write
Own
SUBJECTS User B Read Read Write Read
Write
Own
User C ‘l;ei.l:i Read Read
rite Write

(a) Access matrix

Software Security 28

Access Controls

2. Mandatory Access Control (MAC)

» Enforcing restrictions on a low-security-level entity from accessing
high-security-level objects
- E.g., membership grading system in a cafe or community
» Each member (subject) is assigned a security level
» There are specified permission levels for accessing each bulletin board (object)

* Even if one is the owner of an object, without being granted the security level to
access that object, one cannot access it

» Highly secure, but complex configuration
- Access control cannot be applied differently for each subject
- Permission levels must be set for all subjects and objects one by one

Software Security 29

Access Controls

3. Role-Based Access Control (RBAC)

» Granting permissions to role groups rather than individual users
» Controlling access by assigning roles to users

= Commonly used in services based on job roles

Software Security 30

Access Controls

Resources

3. Role-Based Access Control (RBAC)

 Users assigned to different Roles according

to their responsibilities

» Users-to-Roles are Many-to-Many

 Users may change frequently

il

Role3 —m™Mm8

Software Security 31

Access Controls

4. Attribute-Based Access Control (ABAC)

= Controlling access by describing conditions based on the attributes of
objects and subjects

- E.g., To access “File 1%, users must have the “admin”tag attached to their type attribute

= Attributes

- E.g., Subject name, resource types, and current time

» Typically used in conjunction with RBAC to manage permissions more finely

Software Security 32

Access Controls

4. Attribute-Based Access Control (ABAC)
* Example

{
"bindings": [{
"role": "roles/testRole",

"members": [

"user.developer@s-core.co.kr"

],

"condition™: {

“title": "DateTime Expires”,

"description”: "Expires at noon on 2021-12-31 UTC",

"expression’: " request.time < timestamp(' 2021-12-31T12:00:00Z)"
}

i

https://www.samsungsds.com/kr/insights/cloud_platform_manage.html

Software Security

33

Access Controls and Software Security

* Improper access control can lead to software vulnerabilities
» CWE-22: Improper Limitation of a Pathname to a Restricted Directory (8)
= CWE-264: Permissions, Privileges, and Access Controls
= CWE-269: Improper Privilege Management (22)
» CWE-284: Improper Access Control
» CWE-285: Improper Authorization
» CWE-862: Missing Authorization (11)
» CWE-863: Incorrect Authorization (24) * Highlighted numbers: the rankings of the top 25

most dangerous Common Weakness Enumeration
(CWE) entries in 2023

Software Security 34

Access Controls and Software Security

* Improper access control can lead to software vulnerabilities
» Example: CVE-2023-4696

v 3 5 AEEEE server/jwt.go I'_D
1 @@ -111,6 +111,11 @@ func JWTMiddleware(server *Server, next echo.HandlerFunc, secret string) echo.Ha

1 111 1
112 112 return nil, errors.Errorf{"unexpected access token kid=%v", t.Header["kid"])
1 113 H

114 +

115 + if laccessToken.Valid {

116+ return echo.NewHTTPError(http.StatusUnauthorized, "Invalid access token.")

117 + T

118 +
114 119 if laudienceContains(claims.Audience, auth.AccessTokenAudienceNams) |
115 128 return echo.NewHTTPError(http.StatusUnauthorized, fmt.Sprintf{"Invalid access tg
1 12 1

Software Security 35

Access Controls and Software Security

* Privilege escalation

* Gaining unauthorized permissions within a system, network, or application
- E.g., gain root privileges
* This can be achieved by exploiting vulnerabilities to bypass security
measures that prevent the user from accessing certain types of information

Software Security 36

Access Controls and Software Security

* Privilege escalation

= \/ertical

- An attempt to access the highest level account from the lowest level privileged account
in a multi-level privilege structure

= Horizontal

- An attempt to elevate privileges and moves laterally to access the functions or data of
another user at the same level

Software Security 37

Access Controls and Software Security

* Privilege escalation

* Demo: Windows privilege escalation attack
- Exploiting CVE-2017-0213 vulnerability
- https://www.youtube.com/watch?v=f6xOhBerObM

Software Security 38

https://www.youtube.com/watch?v=f6x0hBerObM

Next Lecture

 Software vulnerabilities

Software Security 39

