Please check your attendance
using Blackboard!

Software Security 1

Lecture 5 - Various

Software Vulnerabilities
[COSE451] Software Security

Instructor: Seunghoon Woo

Spring 2024

Software Security 2

Access Controls and Software Security

* Privilege escalation

* Demo: Windows privilege escalation attack
- Exploiting CVE-2017-0213 vulnerability

* Windows allows an elevation privilege vulnerability when an attacker runs a specially crafted
application

- https://www.youtube.com/watch?v=f6xOhBerObM

Software Security 3

https://www.youtube.com/watch?v=f6x0hBerObM

Overview

* Various Software Vulnerabilities

Software Security 4

Software Vulnerabilities

* Vulnerabilities that frequently occur in software ecosystem
= Race condition

* Format string bug

Software Security)

Race condition

* A state in which two or more concurrent processes (or threads)
compete to access one resource (concurrency error)

" Process: a program that runs on a computer

» Thread: the entity that actually performs work within a process

- Every process has one or more threads to perform its work

- A process with two or more threads is called a multi-threaded process

= CWE-362(21)

- Concurrent Execution using Shared Resource with Improper Synchronization
('Race Condition’)

Software Security 6

Race condition

 Example

» Two processes (A and B) attempting a bit flip
" Case 1:

[Process A] [Process B] [MEMORY]

Read value

0

Flip 1
Read value 1

0

Flip

Software Security 7

Race condition

 Example

» Two processes (A and B) attempting a bit flip
= Case 2:

[Process A] [Process B] [MEMORY]

Read value

0

Read value 0

Flip 1
1

Flip

Software Security 8

Race condition

* Real world example: Dirty COW (CVE-2016-5195)

* One of the most dangerous vulnerabilities discovered in Linux kernel

» Exploiting race conditions to cause writes to read-privileged files
- Abuse of kernel Copy On Write (COW)

- Any normal user can become the root!

DIRTY COW

Software Security 9

Race condition

* Real world example: Dirty COW (CVE-2016-5195)
= Copy On Write

- A resource-management technique used in computer programming to efficiently
implement a "duplicate” or "copy" operation on modifiable resources

DIRTY COW

Software Security 10

Race condition

* Real world example: Dirty COW (CVE-2016-5195)
= Copy On Write

- A resource-management technique used in computer programming to efficiently
implement a "duplicate” or "copy" operation on modifiable resources

[Process A] [Physical [Process B]
Memory l

g

DIRTY COW

Software Security 11

Race condition

* Real world example: Dirty COW (CVE-2016-5195)
= Copy On Write

- A resource-management technique used in computer programming to efficiently
implement a "duplicate” or "copy" operation on modifiable resources

[Process A] [Physical [Process B]
Memory l
| . 1

LANEB
DIRTY COW —>»| Copy of Y

Software Security 12

Race condition

* Real world example: Dirty COW (CVE-2016-5195)

1. We ask the kernel to create

physical memor y

a private mapping of “root_file”

. kernel :
(read-only file) amap -

root_file

virtual
address space

Software Security 13

Race condition

* Real world example: Dirty COW (CVE-2016-5195)

2. We ask the kernel to write “moo”

physical memory

kernel

virtual
address space

to our private mapping of
“root_file"through e
“/proc/<PID>/mem”

moo

- /proc/<PID>/mem: a binary image s ot
representing the process's virtual
of root_file
memory

* Here, a representation of
dirty_ cow.c’s virtual memory

Software Security 14

Race condition

* Real world example: Dirty COW (CVE-2016-5195)
3. The kernel, initially, probes the

Hare? physical memor y

“root_file’”, but writing to this file

kernel
< infemible D -

virtual
address space

private mapping
of root_file

dirty_cow.c

Software Security 15

Race condition

* Real world example: Dirty COW (CVE-2016-5195)

4. Allocate the copied memory area

Oh! Here! physical memor y
through Copy On Write -
kernel

vir
of root_file
dirty cow.c
private mapping
of root_file

Software Security 16

Race condition

* Real world example: Dirty COW (CVE-2016-5195)

5. We use madvise to advise
the kernel that we do not need

(MAVD DONTNEED) our private e -

mapping anymore |
address space rivate mappin
- Kernel forgets about our private p

dirty cow.c
mapping!
private mapping

madvise... DONTNEED physical memor y

Software Security

17

Race condition

* Real world example: Dirty COW (CVE-2016-5195)

6. The kernel is tricked into thinking
our write was for the original

7] PN/
root_file kernel)
— write root_file

moo

madvise... DONTNEED physical memor y

dirty cow.c

private mapping
of root_file

Software Security 18

Race condition

* Real world example: Dirty COW (CVE-2016-5195)

writing physical memor y
kernel
write Mmoo
virtual
ddr spac

DlRTY cow dirty_cow.c

Software Security 19

Race condition

* Real world example: Dirty COW (CVE-2016-5195)

physical memor y
kernel
r‘@le
virtual
address sp

DlRTY cow dirty_cow.c

Software Security 20

Race condition

* Real world example: Dirty COW (CVE-2016-5195)

= Normal case

~rend oply! .
omy:X 0;0:puned :/rat :/bin/ bash s PWL

N |

T "(2//4 /efcfpassu.d

V(L <) (privete copy)

l

Software Security 21

Race condition

* Real world example: Dirty COW (CVE-2016-5195)

= Normal case

Software Security

@

0ny:X 0:0:pwned /et :/bin/bach

virtua |

22

Race condition

* Real world example: Dirty COW (CVE-2016-5195)
= Exploiting Dirty COW

Software Security

@E/)

omy X 00:puned -/t :/bin/ boash

Virtua |

[

|

N

\I';&sc! on)}.ll_ PW 1

|

W 777

i

L

letc/Possud

()(Prilhte Coﬁg)

23

Race condition

* Real world example: Dirty COW (CVE-2016-5195)
= Exploiting Dirty COW

virtua |
P,
0y :X 0:0: pwned :/reot :/bin/ bash \1‘ ﬁwd' .
\\ /,_/_/ /! /B*C/Pﬂﬂkd

- ‘li/// Eprivate—copy)

Software Security 24

Race condition

* Real world example: Dirty COW (CVE-2016-5195)
= Exploiting Dirty COW

virtua |

Y=

omy:X 0:0:pwned :/reot-:/bin/ bosh A P’p’ﬂmir
V77 tetcspossud

Software Security 25

Race condition

* Real world example: Dirty COW (CVE-2016-5195)

» By exploiting this vulnerability, attackers can add their own root accounts
to the“/etc/passwd”file (privilege escalation)

Software Security 26

Race condition

* Real world example: Dirty COW (CVE-2016-5195)

= \Vulnerable source code

- When writing through “/proc/self/mem’, _get user pages()is executed

__get _user_pages(){

{

('page) {
ret
ret faultin_page(tsk, vma

page = follow page mask(vma, start, foll flags page_mask)

start foll_flags, nonblocking)

Software Security

27

Race condition

* Real world example: Dirty COW (CVE-2016-5195)

= \Vulnerable source code

- When writing through “/proc/self/mem’, get user_ pages()is executed

__get _user_pages(){

FALSE page - follow page mask(vma, start, foll flags, &page mask)

('page) {
ret
ret faultin_page(tsk, vma, start foll_flags, nonblocking)

Software Security 28

Race condition

* Real world example: Dirty COW (CVE-2016-5195)

= \Vulnerable source code

- Even writes to Read-only files can be Copy On Write, thus the kernel executes faultin_page

faultin_page(){

ret handle_mm_fault(mm, vma, address, fault_flags)

((ret & VM_FAULT_WRITE) (vma->vm_flags & VM _WRITE))
flags FOLL_WRITE

Software Security 29

Race condition

* Real world example: Dirty COW (CVE-2016-5195)

= \Vulnerable source code

- Even writes to Read-only files can be Copy On Write, thus the kernel executes faultin_page

Software Security

faultin_page(){

cow!

ret handle_mm_fault(mm, vma

((ret
flags

VM_FAULT_WRITE)
FOLL_WRITE

address

(vma

vm_flags

fault_flags)

VM_WRITE))

30

Race condition

* Real world example: Dirty COW (CVE-2016-5195)

= \Vulnerable source code

faultin_page(){

ret handle_mm_fault(mm, vma, address, fault_flags)

((ret & VM_FAULT_WRITE) (vma->vm_flags & VM _WRITE))
flags FOLL_WRITE

| []

Software Security 31

Race condition

* Real world example: Dirty COW (CVE-2016-5195)

= \Vulnerable source code

__get_user_pages(){

{
page = follow page mask(vma, start, foll flags page_mask)

('page) {
ret
ret faultin_page(tsk, vma, start foll_flags, nonblocking)

Software Security 32

Race condition

* Real world example: Dirty COW (CVE-2016-5195)

= \Vulnerable source code

- Itis judged to be a normal request because the flag to check write permission is missing

faultin_page(){

ret handle _mm_fault(mm, vma, address, fault flags)

((ret & VM_FAULT_WRITE) (vma->vm_flags & VM _WRITE))
flags FOLL_WRITE

Software Security 33

Race condition

* Real world example: Dirty COW (CVE-2016-5195)
= A part of security patch

- Removed flag to check write permission

@@ -412,7 +422,7 @@ static int faultin _page(struct task_struct |
* reCOWed by userspace write).
*/
if ((ret & VM_FAULT _WRITE) && !(vma->vm_flags & VM_WRITE))
*flags &= ~FOLL_WRITE;

return ©;

Software Security 34

Race condition

 How can we prevent race condition vulnerabilities?
* Mutex (mutual exclusion)

* Semaphore

Software Security 35

Race condition

e Mutex

= Algorithm used in concurrent programming to prevent race conditions
regarding shareable resources

= Only one process (thread) can acquire the mutex and enter the critical section

Software Security 36

Race condition

* Mutex
mutex
() {
(mutex) {
}
mutex
¥
() 1
mutex
¥

Software Security 37

Race condition

 Semaphore

= Allow as many processes (or threads) as the number of semaphores to access
shared resources

Software Security 38

Format string

* Format string

= A format generally used to accept input from users or output results

- E.g., printf(“%d", integer_value);
* %d: Integer value (decimal)
* %f: float
* %c: character
* %s: string

* %p: void type pointer

Software Security 39

Format string

* Format string attacks

= How is this used in attacks?

([1){
(argv[1])
(argv[1])

Software Security 40

Format string

* Format string attacks

(1) Terminating program

- When we enter “%s”", the program tries to read the address of the stack

* Because the value on the stack is not the address value of the string, it is forced to terminate

ormat "%sksKsKHshsHsSHS
Rskskshskshskhs

Segmentation fault

Software Security 41

Format string

* Format string attacks

(2) Process stack leak

- By checking the stack, attackers can determine the memory structure of the process

* Memory address on the stack at the moment of running this example

1S . fformat "%p %p %p %p %p"

%p %p %p %p %p
Bx1 Ox1 Ox7fa5bd114887 (nil) 6x557b8e12d2as

Software Security 42

Format string

* Format string attacks

= How can we prevent format string attacks?

1. Input validation
2. Function check
 Fprintf, printf, sprint, snprintf, vfprintf, vprintf, vsprintf, syslog, etc

3. The use of GCC options including “-Wformat ” or FormatGuard

) : :$ gcc . fformat.c -o format -Wformat
.fformat.c: In function ‘main’:

.fJformat.c:5:5: format not a string literal and no format arguments [
5 | (argv[1]);
|

43

Software Security

Next Lecture

 Other software vulnerabilities

* E.g., integer overflow, command injection

Software Security 44

