CRYPTBARA: Dependency-Guided Detection of
Python Cryptographic API Misuses

Seogyeong Cho

Korea University

Republic of Korea
jsg8777 @korea.ac.kr

Abstract—We present CRYPTBARA, a precise approach for de-
tecting Python cryptographic API misuses. Cryptographic APIs
are widely used to ensure data security, but their improper use
can inadvertently compromise the security of entire systems. Ex-
isting approaches often fail to capture how cryptographic objects
are initialized and used across inter-procedural contexts, limiting
their ability to detect context-dependent misuses. In contrast,
the key innovation of CRYPTBARA lies in synergistically combin-
ing static dependency analysis with LLM reasoning guided by
dependency context, enabling context-sensitive misuse detection.
To this end, CRYPTBARA extracts intra- and inter-procedural
dependencies from Python code and encodes them into context-
rich prompts, allowing the LLM to perform semantically-aware
analysis despite syntactic complexity. We evaluated CRYPTBARA
on two benchmarks containing real-world cryptographic API
misuses. CRYPTBARA achieved F1 scores of 95.43% and 84 %,
outperforming existing approaches that achieved at most 73.68 %
and 70.59% F1 scores, respectively. CRYPTBARA further demon-
strated its practical impact by discovering previously unknown
misuses in popular Python repositories, with 22 representative
cases reported to and confirmed by maintainers.

Index Terms—Python cryptographic API misuse, Dependency
analysis, Misuse detection

I. INTRODUCTION

Modern software systems heavily rely on cryptographic
primitives to ensure data confidentiality, integrity, and au-
thenticity [1]. Ironically, the cryptographic APIs can become
sources of vulnerabilities when misused [2]. Developers often
struggle to select secure configurations or understand the re-
quirements of cryptographic APIs, thereby introducing vulner-
abilities [3]-[5]. In particular, the Python ecosystem, widely
adopted in server applications and Al systems, extensively
utilizes cryptographic libraries and APIs [0]. However, analyz-
ing correct cryptographic API usage in Python is particularly
difficult, mainly due to the following two common aspects of
cryptographic API usage in Python (see).

« Syntactic ambiguity. Cryptographic parameters are often
constructed across multiple functions or tied to dynam-
ically resolved object types, making them difficult to
analyze through static syntax or flow alone.

« Semantic ambiguity. Misuses such as insecure fallback
logic or policy violations require a semantic understand-
ing of code, which traditional analyzers cannot capture.

* Corresponding author

Seungeun Yu
Korea University
Republic of Korea

spblue4422 @korea.ac.kr

Seunghoon Woo*

Korea University

Republic of Korea
seunghoonwoo @korea.ac.kr

Previous efforts to detect cryptographic API misuses in
Python have shortcomings, primarily due to their inabil-
ity to fully capture the syntax and semantic complexity of
Python code. For example, LICMA [7] relies on a simple
rule-based approach. Although it performs limited backward
data-flow analysis, it fails to capture deeper inter-procedural
relationships. Cryptolation [8] defines more comprehensive
rules and employs program slicing with inter-procedural data-
flow analysis. However, it can detect only misuses explicitly
covered by its specifications and does not fully account for
Python’s unique characteristics such as dynamically resolved
objects. CryptoPyt [9] leverages taint analysis; however, it still
lacks the semantic understanding necessary to identify context-
dependent misuses, such as fallback logic (see).

Our approach. We propose CRYPTBARA (CRYPTographic
API misuse BARricAde), the first approach to integrate static
dependency analysis with LLM-based reasoning for semantic-
aware Python cryptographic API misuse detection.

The main novelty of CRYPTBARA lies in two key aspects:
(1) a crypto-specific dependency analysis tailored to Python’s
dynamic context, and (2) a dependency-guided LLM semantic
reasoning methodology that exploits these dependencies for
accurate misuse detection. Instead of simply combining static
analysis with an LLM-based approach, we enhanced both to
better accommodate Python’s unique characteristics.

Given an input Python codebase, CRYPTBARA begins by
identifying cryptographic API calls. It then analyzes both
intra- and inter-procedural dependencies by collecting related
functions, including those that either call or are called by the
identified APIs. CRYPTBARA focuses on two key syntactic
ambiguities that prior approaches fail to handle effectively
(see): (1) context fragmentation, where critical
information is distributed across multiple functions, and (2)
context-dependent code, where the interpretation of API usage
depends on the surrounding context. To this end, CRYPTBARA
performs fine-grained dependency analysis across and within
functions to extract critical dependencies (see),
such as parameter flows (to address context fragmentation) and
receiver object resolution (to handle context-dependent code).

Using the extracted dependency information, CRYPTBARA
constructs context-rich prompts for LLMs (see).
To further improve detection effectiveness, we consult official

TABLE I: Analysis capabilities of existing tools and CRYPTBARA.

Tool
LICMA [Cryptolation [CryptoPyt [CRYPTBARA

Feature

Intra-procedural analysis v
Inter-procedural analysis
Python-tailored analysis
Context-aware analysis
Semantic-aware analysis

X | [x|x
x|> |||«
MEIESEE
AN ENENENEN

documentation to extract security rules related to crypto-
graphic API misuse (see). CRYPTBARA then
composes prompts that incorporate the target code, relevant
rules, and dependency information. This enables the LLM
to reason about both the syntax and semantics of the code,
facilitating more precise detection of cryptographic misuses.

Evaluation. We evaluated CRYPTBARA using two benchmark
datasets: (1) PyCryptoBench [8] and (2) a real-world Python
cryptographic misuse dataset that we constructed by analyzing
security-relevant patch commits from open-source repositories
(see). Each benchmark contains diverse crypto-
graphic misuses along with safe examples without any misuse.

When we compared CRYPTBARA with existing approaches
(i.e., LICMA [7] and Cryptolation [8]), CRYPTBARA outper-
formed both baselines across the two datasets. On PyCryp-
toBench, CRYPTBARA achieved 95.43% F1 score, while the
existing approaches reached only 18.86% and 73.68%, respec-
tively. On the real-world dataset, which contains significantly
more complex code structures, CRYPTBARA achieved 84% F1
score, outperforming one approach that failed to detect any
misuses and another that achieved 70.59% F1 score. As shown
in , the superior accuracy of CRYPTBARA results from
its comprehensive analysis capabilities that existing tools lack,
particularly Python-tailored features, context- and semantic-
aware analysis (see).

To demonstrate the practicality of CRYPTBARA, we de-
ployed it on widely used real-world Python repositories from
GitHub. Consequently, CRYPTBARA detected 172 crypto-
graphic API misuses. We reported 22 critical cases, which
were confirmed as requiring urgent attention: four have been
patched, and 11 cases are currently under discussion.

Contribution. We summarize our contributions below.

o We present CRYPTBARA, a novel approach for detecting
Python cryptographic API misuses. The core technical
contribution is a hybrid approach that combines fine-
grained static dependency analysis with LLM-guided
semantic reasoning to enable context-aware detection.

¢ On two benchmark datasets composed of diverse misuse
cases, CRYPTBARA achieved 95.43% and 84% F1 scores,
respectively, thereby outperforming existing approaches,
which achieved up to 73.68% and 70.59% F1 scores.

o CRYPTBARA demonstrated practical impact by detecting
172 cryptographic misuses across popular Python reposi-
tories, with 22 critical cases reported to maintainers; four
have been patched, and 11 remain under discussion.

Listing 1: Example of context fragmentation.

1 def get iterations():
2 return 10000

3 def derive key():

4 iters = get_iterations()

5 return pbkdf2_hmac(‘sha256’, b‘pass’, b‘salt’, iters)

Listing 2: Example of context-dependence code.

1 def make crypto():

2 return AES.new(b"key1234567", AES.MODE_CBC)
3 cipher = make_crypto()

4 cipher.update(b"secret”)

II. PROBLEM STATEMENT AND CHALLENGES
A. Problem statement

Cryptographic libraries are used to protect data, but the
improper use of cryptographic APIs can introduce security
threats. This is frequently encountered in real-world software
systems where security is critical, putting sensitive user data
at risk [10]. Therefore, we aim to detect Python cryptographic
API misuses. This includes APIs invoked with improper
parameters, the use of insecure or deprecated cryptographic
functions, and the use of non-randomized or hardcoded values
in security-critical operations (see).

B. Challenges

Detecting Python cryptographic API misuses is a non-trivial
task due to the language’s dynamic features and diverse library
ecosystems. Even recent studies (e.g., [8], [9]) have limitations
that constrain their effectiveness in real-world scenarios.

Challenge I: Ambiguous syntax in cryptographic contexts.
One major challenge in analyzing Python code lies in its
syntactic flexibility. Security-critical values, such as crypto-
graphic keys, initialization vectors (IVs), or iteration counts,
are often not defined directly at API call sites. Instead, they are
computed across helper functions or assembled through multi-
step logic, resulting in context fragmentation. This makes it
difficult for static analyzers to trace value origins and assess
compliance with security policies. For example,

shows a case where the iteration count used in pbkdf2 hmac is
computed in a separate function. Because it enforces a policy
requiring the iteration count to exceed a minimum threshold,
static tools must perform inter-procedural analysis to verify
that the requirement is met. However, existing approaches
(e.g., [8], [O]) often fail to capture such cases, as they are
limited to tracking explicit flows and cannot reconstruct value
derivation chains.

A second source of ambiguity arises from Python’s dynamic
typing and object-oriented design, which leads to context-
dependent resolution. Cryptographic APIs often reuse method
names across object types (e.g., update() may refer to either a
cipher or hash operation). Without resolving the object’s type
and construction path, static tools cannot determine whether a
call represents encryption, hashing, or another operation. As
shown in , the method update() is invoked on an
object returned by a function. Without knowing the return
type of make crypto, a static analyzer cannot associate this
call with the correct misuse policy.

Listing 3: Example of semantically ambiguous code.

1 def derive key(input):

2 return ... # generate key from input

3 def get key(user_input):

4 if user_input:

5 return derive key(user input)

6 return "default key”

7 def encrypt(msg):

8 user_input = input(”"Enter (leave blank to use default): ")
9 key = get_key(user_input)

10 cipher = AES.new(key.encode(), AES.MODE_ECB)
11 return cipher.encrypt(msg)

Challenge II: Semantic ambiguity in cryptographic misuse.
Even when the syntax ambiguity is addressed, determining
whether a cryptographic API usage is secure often requires
semantic understanding. Misuses such as hardcoded keys are
not always syntactically obvious and often depend on control
flow or implicit developer intent. These cases are difficult to
capture with rule-based or taint-based analysis alone, as they
are insufficient to understand the security context.

For example, in , the function get key() returns
either a derived key from user input or a hardcoded key.
Although the code looks structurally correct, it may perform
encryption with a fixed key and ECB mode (both known to be
insecure). Existing approaches may follow the data flow but
miss the risk in the fallback logic, because they fail to fully
interpret the control flow or the meaning of the values.

III. DESIGN AND IMPLEMENTATION OF CRYPTBARA

In this section, we introduce CRYPTBARA, a hybrid ap-
proach for detecting Python cryptographic API misuses.

Resolving syntactic ambiguity is challenging, and the pres-
ence of semantic ambiguity further complicates our target
problem. To this end, CRYPTBARA uses a synergistic approach
that bridges the gap between static analysis and contextual
understanding through dependency-enriched prompting.

Preliminary concepts. To facilitate understanding of our
approach, we briefly explain several key terms used throughout
this paper.

o Data flow analysis tracks how data values propagate
through variables and expressions in a program, which is
crucial for understanding the context and transformations
of security-relevant data.

o Control flow analysis determines the possible execution
paths of a program by analyzing the order in which
statements and functions may be executed.

o Intra-procedural analysis examines control and data
flows within a single function or procedure.

« Inter-procedural analysis extends the scope of analysis
across multiple functions or procedures, capturing flows
that span function boundaries.

These are essential for cryptographic misuse detection because
they enable the identification of how cryptographic APIs
are invoked, how their parameters are derived, and whether
insecure data or configurations influence their usage.

INPUT r P1. Static dependency analysis - P2. LLM-based misuse detection
=) .
<,>4> —| Function Function Prompt Chain-of-

X v Inter- Inter- Thought
Targectt Idctentlfle(*il1) proceldu_ral proceldu_ral Target code prompting
project cryptographic analysis analysis)

API calls Security rule
1 -
pngzaum Dependency LLM
analysis X |

Predefined information i

¢=| Cryptographic | <= Dpependency information)
(%% API misuse rule| (= p(e.g. C;II chain) |7 &) Cryptographic

. 4 API misuse

OUTPUT

Fig. 1: High-level overview of CRYPTBARA.

Overview. CRYPTBARA comprises two phases: static depen-
dency analysis (P1) and LLM-based misuse detection (P2).
illustrates the high-level workflow of CRYPTBARA.

In P1, CRYPTBARA performs fine-grained static dependency
analysis to extract intra- and inter-procedural relationships
between cryptographic API calls and their arguments. By
identifying dependencies related to cryptographic API usage,
CRYPTBARA mitigates syntactic ambiguities.

In P2, CRYPTBARA feeds the extracted dependency context
into LLMs via structured prompts. These prompts enable
LLMs to reason about object semantics and configuration
safety, thereby enabling more accurate detection of crypto-
graphic misuses.

A. Static dependency extraction (P1)

In P1, CRYPTBARA examines the dependencies of the given
Python code by using intra- and inter-procedural analysis. This
dual approach enables comprehensive extraction of API usage
context, data dependencies, and potential misuse patterns
across both local and cross-functional scopes.

This phase begins by identifying Python cryptographic API
calls in the codebase. CRYPTBARA filters method invoca-
tions corresponding to 204 commonly used cryptographic
primitives, such as symmetric encryption (e.g., AES) and key
derivation (e.g., PBKDF2HMAC). To compile this set, we man-
ually collected frequently used classes and functions from
popular Python libraries, including pycryptodome, PyNaCl, and
cryptography. This can be performed straightforwardly using a
function parser (e.g., Joern parser [!1]). The final list of 204
primitives was curated through an analysis of each library’s
official documentation, usage examples, and developer guides.
Using primitive-level identification, CRYPTBARA ensures con-
sistent detection in various Python cryptographic libraries.

1) Intra-procedural analysis: For the functions containing
the identified cryptographic APIs, CRYPTBARA examines the
following three key intra-procedural dependencies: receiver
object, return value, and call hierarchy.

(1-1) Receiver object dependencies. Python APIs often
follow object-oriented styles, where operations are performed
by calling methods on receiver objects. For example, in the
encrypt data function in , the cipher object is
first created using AES.new (line #4), and the encryption is
performed by invoking encrypt on cipher (line #5).

1 from Crypto.Cipher import AES
2
3 def encrypt_data(key, plain_text):

cipher = AES.new(key, AES.MODE_ECB)<«— (1) Receiver object

encrypted_data = cipher.encrypt(plain_text)

4
5

6 return|encrypted_data (2) Return value
7

8

9

def handle_request():
key = b'0123456789" (3) Call hierarchy
10 plain_text = b'attack’

11 enc_result = encrypt_data(key, plain_text)
12 print(enc_result)

Fig. 2: Example of intra-procedural dependencies.

To understand how cryptographic objects are initialized,
CRYPTBARA uses a backward slicing technique that traces
the origin of receiver objects used in API calls.

(1) The backward slicing technique starts by identifying
the cryptographic API call (e.g., cipher.encrypt) and
determining the receiver objects (e.g., cipher).

(2) CRYPTBARA then follows the data flow in reverse to find
where the variable was created. This includes locating
assignment statements that call constructor functions
(e.g., AES.new) and checking the parameters passed dur-
ing initialization (e.g., key and AES.MODE ECB).

CRYPTBARA leverages a code property graph (CPG), a
unified representation that merges AST, control flow graphs,
and data flow graphs, to identify data flows related to target
functions. This enables precise tracking of both syntactic and
semantic relationships in code, making it well-suited for our
goal of extracting cryptographic API-related dependencies.
Specifically, we utilized the Joern parser [! 1], which is widely
adopted in related research, to extract CPGs from Python code.

For example, to identify the initialization of a receiver object
such as cipher in cipher.encrypt (see), CRYPTBARA
first locates the API call node in the CPG and identifies the
corresponding receiver variable. It then performs a backward
traversal along data flow edges to find the assignment where
the receiver was constructed (e.g., cipher = AES.new(...)).

(1-2) Return value dependencies. Return values from crypto-
graphic operations often contain sensitive data (e.g., ciphertext
or derived keys), and improper handling (e.g., storage without
protection) can undermine security guarantees. To detect inse-
cure handling of cryptographic outputs, CRYPTBARA applies
forward data flow analysis that tracks how return values from
cryptographic API calls are used.

(1) The forward data flow analysis begins by identifying a
statement where the output of a cryptographic API is
assigned to a variable.

(2) CRYPTBARA then inspects the immediate statements
that use this variable to determine how the value is used.
Here, CRYPTBARA does not follow the full transitive
data flow chain, but focuses on direct usages (e.g., return
statements, storage, or function arguments) appearing
shortly after the assignment for simplicity and precision.

CRYPTBARA performs forward analysis over the CPG to
trace data flows from cryptographic API invocations. This
design prevents over-approximation due to long-range depen-
dencies and highlights cases where cryptographic outputs are
exposed too soon or without proper processing.

For example, the encrypted data (i.e., cipher.encrypt) is
assigned to encrypted data in . The variable is then
immediately returned by the function without further process-
ing. CRYPTBARA captures this single-step propagation using
forward data flow analysis. CRYPTBARA can flag potential
issues, such as insecure exposure of sensitive data, which may
occur if encrypted values are returned or transmitted without
additional protection (e.g., integrity checks).

(1-3) Call hierarchy dependencies. CRYPTBARA examines
how cryptographic operations are triggered by building intra-
procedural call graphs. To do this, CRYPTBARA scans each
function to extract all direct call expressions. For each call,
the enclosing function is marked as the caller, and the called
function name is recorded as the callee. The analysis does
not cross function boundaries. As shown in , the
handle request function calls encrypt data, which contains
the cryptographic API call. CRYPTBARA identifies this re-
lationship by analyzing the body of handle request and
extracting the call to encrypt data. This enables detection
of cryptographic usage that occurs indirectly through one or
more layers of internal function calls.

2) Inter-procedural analysis: Although intra-procedural
analysis captures critical information within function bound-
aries, it has limitations in tracking data flows across func-
tions and fully resolving context fragmentation. Therefore,
CRYPTBARA performs inter-procedural analysis to extract
three key dependencies for each identified cryptographic call:
parameter propagation, constant usage, and call chain.

(2-1) Parameter propagation dependency. CRYPTBARA first
examines how security-sensitive data propagates through mul-
tiple functions, including parameter passing, global variable
access, and object attribute manipulation. Specifically, by
traversing the AST of each function related to cryptography
API calls, CRYPTBARA identifies references where crypto-
graphic values move into or out of function scopes.

(1) For each parameter at function call sites, it performs
backward tracing within the AST to determine the origin
of values (i.e., whether from local assignments, global
variables, or object fields).

(2) CRYPTBARA then leverages caller-callee relationships
(i.e., identified by call hierarchy inspection within intra-
procedural analysis) to follow these parameter flows
across multiple function call layers, reconstructing both
direct and indirect propagation paths.

The extracted parameter propagation dependencies ensure
full visibility of how sensitive cryptographic values are passed,
reassigned, or reused throughout the codebase.

For example, in , CRYPTBARA identifies that key
(i.e., a parameter passed to encrypt data in line #20) is

TABLE II: Summary of grouped cryptographic API misuse rules.

Group [ID [Category [Rule name [Checkpoints [Severity[
R1 | Symmetric encryption Use secure and modern symmetric ciphers | Secure algorithm, sufficient key size High
Algorithm R2 | Asymmetric encryption Use strong asymmetric key sizes RSA > 2048 bits, ECC > 256 bits High
selection R3 | Hash function Avoid weak hash functions Use SHA-256 or higher High
R4 | Mode of operation Avoid insecure block cipher modes Use authenticated or randomized modes High
Key and RS5 | Key management Avoid hardcoded or static keys Keys should not be constant or predictable | High
randomness R6 | PRNG quality Use cryptographically secure PRNGs Avoid random for secure keys High
management R7 | Seed management Avoid predictable PRNG seeds Use entropy-based seeding Medium
Parameter and R8 | IV management Avoid static TVs IV should be randomized for each use High
component R9 | Salt management Avoid static salts in PBE Salt should be unpredictable High
management R10 | PBE iteration count Use sufficient iteration count for PBE #Iteration > 100,000 High
‘PIOtO.COl and . |RI1 | Secure configuration mode | Use authenticated cipher modes Include MAC or AEAD mode Medium
configuration security

1 from Crypto.Cipher import AES
2 import hashlib

3

4 SALT = b'12345678"
5 (2) Constant

6 def derive_key(password):
7 global SALT
8 key = hashlib.pbkdf2_hmac('sha256', password, SALT, 1000)

9 return key
10

11 def encrypt_data(key, plain_text):
12 cipher = AES.new(key, AES.MODE_ECB)
13 return cipher.encyrpt(plain_text)

(3) Call chain

15 def handle_request():

16 password = b'secret’ —._|
17 key = derive_key(password)
18 plain_text = b'Encrypt me’
19 padded = plain_text.ljust(16, b'\x00")
20 encrypted = encrypt_data(key, padded)

(1) Parameter propagation

Fig. 3: Example of inter-procedural dependencies.

the return value of the derive key function. It further traces
that this value is obtained by calling derive key with the
password parameter, which is a local variable defined in
handle request. CRYPTBARA closely analyzes how parame-
ters are passed along in this manner. In addition, it detects that
the SALT used in derive key originates from a global variable.

(2-2) Constant dependency. Cryptographic API misuses fre-
quently originate from the use of hardcoded constants. There-
fore, CRYPTBARA scans AST nodes to detect literal values
commonly associated with cryptographic misuse (e.g., fixed
encryption keys). CRYPTBARA particularly focuses on how
literal values are employed as arguments in cryptographic
API calls and evaluates their effect on cryptographic opera-
tions. For example, in , CRYPTBARA identifies that
password, SALT, and plain_text are all hardcoded values. In
addition, CRYPTBARA identifies that both constant values in
the derive key function (i.e., SALT and password) are used
in the call to hashlib.pbkdf2 hmac. This information is later
used to assist in detecting potential API misuses.

(2-3) Call chain dependency. Finally, CRYPTBARA recon-
structs complete call chains by expanding caller-callee re-

lationships beyond the intra-procedural level, revealing how
cryptographic operations are invoked through inter-procedural
function calls. This analysis begins by building a func-
tion call graph from previously extracted caller-callee pairs.
Starting from identified entry points or top-level functions,
CRYPTBARA recursively traverses the graph to enumerate all
possible execution paths leading to cryptographic API calls.
The resulting call chains expose the execution sequences
directing cryptographic operations, allowing CRYPTBARA to
verify whether these functions are invoked along intended
control flows or through unexpected paths.

Notably, CRYPTBARA does not strictly separate intra- and
inter-procedural analysis, as they often interact in practice.
For example, a constant may appear within a single function
(intra-procedural), while a receiver object might be passed
in as a parameter (inter-procedural). Rather than explicitly
distinguishing the two techniques, CRYPTBARA leverages both
types of information in combination to analyze the context
surrounding cryptographic API calls.

B. LLM-based misuse detection (P2)

CRYPTBARA then employs an LLLM to detect cryptographic
API misuses by leveraging the structured context extracted
during static dependency analysis.

1) Rules for cryptographic API misuse: Cryptographic
misuse involves subtle implementation details and contextual
factors that can lead to serious security vulnerabilities. To
address this issue, we have developed a structured rule frame-
work grounded in established security principles from OWASP,
NIST, and PKCS [12]-[14]. Each rule specifies the target cryp-
tographic primitive or API, the misuse condition (e.g., insecure
mode, weak key length, static salt), and the checkpoints needed
to determine misuse, along with the rationale and references to
the relevant standards. The framework covers major categories
of cryptographic operations, ensuring both broad coverage and
context-aware detection.

We consider the following four functional categories.

(1) Algorithm selection. Using insecure algorithms (e.g.,
weak hash algorithms) can critically undermine the
entire system. This category ensures the use of modern
and recommended primitives.

TABLE III: Misuse and safe examples of cryptographic APIs.

Prompt: You are a security analyst. You are provided with a rule, a few
examples of violations, target Python code, and dependency information.

[D [Category [Case [Example [Determine whether there exists any cryptographic API misuse.
RI Symmetric Misuse | DES.new(key) Important constraints:
encryption Safe AES.new(key, AES.MODE GCM) - Do not assume that the code must contain a misuse. It may or may not.
R Asymmetric Misuse RSA.generate private key(1024) - Only consider misuses within the given rule.
encryption Safe RSA.generate private key(2048) gdllsiuse{rules: {m(liei} // Enumerate 11 rules
N X ode: qtarget_code // Target Python code
R3 Has,h Misuse hashlib.mdS(), SHAT.new() Dependency: {dependencies } // Enumerate every dependency
function Safe hashlib.sha256(), SHA3 256.new()
R4 Mode of Misuse | AES.new(key, AES.MODE ECB) *Qutput*: {misuses} // in a JSON format
operation Safe AES.new(key, AES.MODE GCM .
P - (? =) Fig. 4: Example structure of a prompt passed to the LLM.
RS Key Misuse key = b"my hardcoded key
management Safe key = os.urandom(32)
R6 PRNG Misuse | random.random() overall rule set is not significantly different—aside from a
quality MSafe os. urandom() stronger emphasis on cryptographic API misuse, CRYPTBARA
isus dom. seed(time. ti A . . .
R7 Seed suse | randon. seed(tine. tine()) employs a distinct approach in the misuse detection phase
management Safe random. seed(os.urandom(16)) bini d d lvsi ith LLM-b d
. v Misuse | iv = b"0000000000000000" (e.g.., combining dependency analysis with -based rea-
management Safe | iv = os.urandon(16) soning), setting it apart from existing techniques.
RO Salt Misuse | salt = b‘salt1234’ 2) Prompt construction: CRYPTBARA constructs each
management | Safe | salt = os.urandom(16) LLM prompt by integrating static analysis outputs into a
Rio | PBE iteri‘ﬁon MSIS?“ iera?ms:;zzz% structured format.
coun are 1terations= . .
- A prompt contains the following three elements.
Ri1 Secure Misuse | ChaCha20.new() (no MAC)
configuration Safe ChaCha20 Poly1305.new() (1) Target code snippet. The specific code region containing
RI2 TLS Misuse | requests.get(url, verify=False) cryptographic API calls.
configuration Safe requests.get(url)

(2) Key and randomness management. Secure key gener-
ation and strong randomness are fundamental to prevent-
ing brute-force and prediction-based attacks. According
to NIST SP 800-133 [14], all cryptographic keys should
be derived from an approved random bit generator,
ensuring sufficient entropy and unpredictability.

(3) Parameter and component management. Miscon-
figured or hardcoded parameters (e.g., IVs and it-
eration counts) often lead to subtle but severe wvul-
nerabilities, necessitating strict validation. For exam-
ple, according to the recent OWASP guidelines [12],
[13], PBKDF2 should use as many iterations as practi-
cal—specifically, 600,000 for PBKDF2-HMAC-SHA256 and
210,000 for PBKDF2-HMAC-SHA512.

(4) Protocol and configuration security. Even when strong
primitives are used, insecure protocols or improper con-
figurations can break end-to-end security guarantees.

Based on the previously referenced documents and the four
categories, we selected 11 rules related to cryptographic API
misuse. summarizes the selected 11 misuse rules, and

presents both misuse and safe examples. For each
rule, we specify the essential checkpoints that must be verified.
These checkpoints will later serve as elements within prompts
when detecting misuses using LLM-based methods.

Compared to recent taint analysis-based studies on detecting
cryptographic API misuse in Python [9], rules that are not
directly related to cryptographic APIs (e.g., use of JSON
Web Tokens) have been excluded, and some rules have been
consolidated (e.g., secure configuration mode). Although the

(2) Security rule. Definition of misuse patterns to evaluate.
(3) Dependency. Intra- and inter-procedural dependencies.

shows an example prompt structure, which in-
corporates all identified dependencies along with the selected
rules. Our prompt structure restricts the evaluation scope to
specific vulnerability patterns. For example, when analyzing
nonce reuse, the prompt directs LLM’s focus solely on nonce
handling rather than examining peripheral security concerns.
In the final step, if the LLM classifies a code instance
as a cryptographic API misuse, CRYPTBARA regards it as
a misuse case. If the model does not raise any concerns,
CRYPTBARA treats the usage as benign and proceeds without
intervention. Although various LLM models are available, in
our experiments, CRYPTBARA employs GPT-40-mini, a widely
used model known for delivering strong performance without
fine-tuning [15], [16].

C. Implementation of CRYPTBARA

CRYPTBARA consists of approximately 1,900 lines of
Python code, excluding external libraries. CRYPTBARA com-
prises two modules: static analyzer (for P1) and misuse
detector (for P2). The static analyzer examines dependencies
in the input codebase. It utilizes Joern’s Python preprocessing
pipeline (pysrc2cpg) to generate a CPG [11]. Inter-procedural
dependency analysis is performed using Python’s built-in
AST module. The misuse detector leverages LLM to detect
cryptographic API misuses. It combines predefined rules with
relevant code snippets, and is implemented using the OpenAI
GPT-40-mini. Each prompt was issued five times, and the
decision was determined by majority vote. The evaluation
of prompt components and LLM backends is presented in

IV. EVALUATION

In this section, we evaluate CRYPTBARA based on the
following four research questions.

¢ RQ1: Accuracy. How accurately does CRYPTBARA de-
tect cryptographic API misuses compared to state-of-the-
art static analysis tools? ()

+ RQ2: Effectiveness. How do prompt components and
the choice of LLM backend affect the effectiveness of
CRYPTBARA? (ablation study;)

e RQ3: Performance. How efficient is CRYPTBARA in
detecting cryptographic API misuses? ()

o RQ4: Practicality. Can CRYPTBARA find unknown cryp-
tographic API misuses in the wild? ()

Experiments were conducted on a macOS machine equipped
with an Apple M2 chipset (8-core CPU, 16GB RAM).

A. Accuracy

1) Benchmark dataset: To evaluate the accuracy, we con-
duct experiments using two benchmark datasets: (1) the pub-
licly available PyCryptoBench [8] and (2) our own curated
dataset of real-world Python cryptographic API misuses.

We selected PyCryptoBench to enable fair and reproducible
comparisons, as it is widely adopted in recent studies and
provides labeled misuse and safe examples across diverse
misuse categories. Because CRYPTBARA is designed to verify
the secure use of cryptographic APIs, we excluded test cases
unrelated to such APIs, including those involving serialization
or regular expressions. As a result, we evaluated 636 files (out
of 1,836): 96 labeled as vulnerable and 540 as safe. However,
PyCryptoBench consists mostly of short code snippets (e.g.,
individual functions) and lacks real-world complexity.

Therefore, we constructed an additional dataset from popu-
lar Python repositories to evaluate CRYPTBARA on real-world
code, focusing on complex, multi-function cryptographic mis-
uses. We constructed the real-world dataset by combining the
known and hidden misuse fix commits.

« Known misuse set. We first scanned all Python-related
CVE:s to identify cases involving cryptographic misuse
CWEs (e.g., CWE-330: Use of Insufficiently Random
Values) with available patch commits on GitHub, and
then collected the patch commits [17]-[19].

o Hidden misuse set. We manually searched GitHub using
cryptography-related keywords (e.g., “hardcoded key”),
applying a language filter for Python, and collected com-
mits that fixed insecure cryptographic API usage [20].

Each commit was labeled based on its pre- (insecure) and
post-patch (safe) state. However, in some cases, post-patch
code remained insecure and was fixed in a subsequent commit.
We therefore manually rechecked all safe-labeled code to fi-
nalize the insecure and safe labels. Consequently, we collected
26 source files with misuses and 21 secure files from more
than 20 real-world repositories, including mindsdb and ajenti
repositories. Among the 26 misuse files, 5 cases are from the

known misuse set, and the remaining 21 cases are from the
hidden misuse set. These files encompass four categories of
cryptographic misuses: algorithm (8), key/randomness (15),
parameter/component (2), and protocol (1). In particular, the
collected files contain 236 distinct Python functions, which is
not significantly smaller than those in the first benchmark.

2) Methodology: We compared CRYPTBARA with two
state-of-the-art approaches with publicly available and repro-
ducible implementations: LICMA [7] and Cryptolation [&].
Both tools are static analysis-based and aim to identify Python
cryptographic API misuses. In particular, Cryptolation can
identify various categories of cryptographic API misuses, mak-
ing it a suitable subject for comparison. Other tools, such as
CryptoPyt [9], were unavailable despite our request. We pro-
vide an indirect comparison with CryptoPyt in .

We used four standard metrics: correctly identifying a
misuse as a true positive (TP), incorrectly labeling a misuse as
safe as a false negative (FN), incorrectly flagging a safe case
as a misuse as a false positive (FP), and correctly identifying a
safe case as a true negative (TN). To identify FPs and FNs, for
PyCryptoBench, we used the provided misuse and safe labels
as-is. For the real-world dataset, we used the misuse and safe
labels that we had previously established for each commit.

We then computed precision (P = #TP/ (#TP+#FP)), recall (R
= #TP/ (#TP+#FN)), and F1 score ((2%P*R)/(P+R)) to assess the
overall effectiveness of each tool.

3) Comparison on PyCryptoBench.: summarizes
the measurement results. CRYPTBARA achieved 95.43% FI1
score, whereas the existing approaches achieved 18.87% and
73.68% F1 scores, respectively. LICMA, which relies on sim-
ple selected rules, failed to identify many misuse cases. Cryp-
tolation showed particular weakness in detecting cryptographic
misuses that require understanding Python’s dynamic context.
In the G1-3 group in , where context-dependent analy-
sis is critical, Cryptolation achieved only 41.67% recall. Both
approaches struggled to detect syntactically or semantically
ambiguous misuses, yielding many FNs.

CRYPTBARA successfully identified all cryptographic mis-
uses, except for two cases in the G1-3 group. These ex-
ceptions involved parameter management issues that were
not detected because the misuse pattern was not included
in the selected rule set. Notably, CRYPTBARA achieved the
highest F1 score across all groups. It identified all misuse
cases detected by LICMA. However, CRYPTBARA was not
a superset of Cryptolation. This discrepancy arose because
Cryptolation considered certain misuse rules that CRYPTBARA
did not incorporate. Seven FPs arose from safe code that
merely imported potentially dangerous libraries (e.g., import
md5, used in Python 2). Despite the absence of any misused
API, the LLM flagged them as potentially risky.

4) Comparison on real-world dataset.: presents a
summary of the accuracy results of the three tools. Similar
to the first benchmark, CRYPTBARA achieved the highest
F1 score of 84%, outperforming existing techniques, which
achieved 0% and 70.59% F1 scores, respectively.

TABLE 1IV: Accuracy evaluation results on PyCryptoBench.

| IDX | Group* Tool |#TP #FP #FN #TN | Precision Recall F1 score
LICMA 10 0 38 468| 100.00% 20.83% 34.48%
Gl1-1 Algorithm selection Cryptolation | 31 0 17 468 | 100.00% 64.58% 78.48%
CRYPTBARA | 48 6 0 462 | 88.89% 100.00% 94.12%
LICMA 0 0 24 12 0.00% 0.00% 0.00%
Gl1-2 Key and randomness management Cryptolation 15 0 9 12| 100.00% 62.50% 76.92%
CRYPTBARA | 24 1 0 11| 96.00% 100.00% 97.96%
LICMA 0 0 24 60 0.00% 0.00% 0.00%
G1-3 | Parameter and component management | Cryptolation 10 0 14 60| 100.00% 41.67% 58.82%
CRYPTBARA | 22 0 2 60| 100.00% 91.67% 95.65%
LICMA 10 0 86 540| 100.00% 1042% 18.87%
Total results Cryptolation | 56 0 40 540 | 100.00% 58.33% 73.68%
CRYPTBARA | 94 7 2 533 | 93.07% 97.92% 95.43%

*Protocol and configuration security was excluded because it is not present in this benchmark dataset.

TABLE V: Accuracy evaluation results on real-world dataset.

| IDX | Group Tool |#TP #FP #FN #TN | Precision Recall FI score
LICMA 0 0 8 5 0.00% 0.00% 0.00%
G2-1 Algorithm selection Cryptolation 3 1 5 41 7500% 37.50% 50.00%
CRYPTBARA 7 2 1 3| 77.89% 87.50% 82.35%
LICMA 0 0 15 1 0.00% 0.00% 0.00%
G2-2 Key and randomness management Cryptolation 13 5 2 6| 7222% 86.67% 78.79%
CRYPTBARA | 11 1 4 10| 91.67% 7333% 81.48%
LICMA 0 0 2 3 0.00% 0.00% 0.00%
G2-3 | Parameter and component management | Cryptolation 1 0 1 3| 100.00% 50.00% 66.67%
CRYPTBARA 2 0 0 3| 100.00% 100.00% 100.00%
LICMA 0 0 1 2 0.00% 0.00% 0.00%
G2-4 | Protocol and configuration security Cryptolation 1 1 0 1] 50.00% 100.00% 66.67%
CRYPTBARA 1 0 0 2| 100.00% 100.00% 100.00%
LICMA 0 0 206 21 0.00% 0.00% 0.00%
Total results Cryptolation 18 7 8 14| 72.00% 69.23% 70.59%
CRYPTBARA | 21 3 5 18| 8750% 80.77% 84.00%

Due to the complexity of real-world Python code syntax,
LICMA’s simple rule-based approach failed to detect any
misuse cases. Cryptolation performed better than LICMA but
missed cases involving context fragmentation. It also produced
seven FPs due to misinterpreting complex code.

CRYPTBARA achieved an F1 score of 84% on the real-
world dataset, the highest among all tools. Although it effec-
tively extracted dependency information even from complex
cases, some FPs were caused by misinterpretation during the
LLM-based detection phase. The five FNs were caused by
misuse patterns that were not covered by our predefined rule
set. In particular, most inter-procedural cases were concen-
trated in G2-1, whereas G2-2 mainly included simpler, rule-
based issues such as seed management. Therefore, although
CRYPTBARA achieved the best F1 score in both subsets,
Cryptolation identified more TPs in G2-2.

5) Indirect comparison with CryptoPyt: CryptoPyt [9] is a
state-of-the-art misuse detection approach that relies on rule-

based static analysis. However, we noted that CryptoPyt (1) is
limited to detecting misuses within predefined taint specifica-
tions, (2) defines rules that cover broad security concerns (e.g.,
network or authentication configuration) rather than focusing
specifically on cryptographic API misuses, and (3) does not
fully account for Python’s dynamic characteristics such as
context-dependent object resolution.

In contrast, CRYPTBARA performs dependency analysis
tailored to Python’s features, applies crypto-specific rules, and
leverages dependency-guided LLM semantic reasoning, which
we believe contributes to higher effectiveness in identifying
cryptographic API misuses.

Answer to RQI1. CRYPTBARA successfully identified
Python cryptographic API misuses with higher accuracy
than existing approaches in both benchmarks. Its compre-
hensive dependency analysis and semantic-aware LLM-
based approach overcame the limitations of prior methods.

TABLE VI: Accuracy evaluation across different prompt design.

[Tool | #TP [#FP [#FN [#TN [Precision | Recall |F1 score |

Zeroshot | 70 [1 [26 | 539 [98.59% [72.92% | 83.83%
Few-shot (ES1) | 65 | 2 | 31 | 538 | 97.01% |67.71% | 79.75%
Few-shot (FS2) | 89 | 7 | 7 |533 | 9271% |92.71% | 92.71%
Chain-of-Though | 94 | 7 2 | 533 | 93.10% |97.92% | 95.43%

B. Effectiveness

We then evaluate the effectiveness of CRYPTBARA using
the PyCryptoBench benchmark dataset.

1) Prompt design: We first evaluate the effectiveness of
CRYPTBARA’s prompt design by comparing four strategies.

1) Zero-shot prompting. The LLM is presented with only
the code, without any accompanying rule or context.
This evaluates the model’s inherent ability to identify
misuses based solely on its pre-trained knowledge.

2) Few-shot prompting with dependencies (FS1). The
LLM is provided with the code and its dependencies,
but without misuse rules. This evaluates the contribution
of dependency information alone.

3) Few-shot prompting with rules (FS2). The LLM re-
ceives the code and misuse rules, but without dependen-
cies. This setup evaluates the effectiveness of structured
rules without contextual dependency information.

4) Chain-of-Thought (CoT) prompting. The LLM is
provided with both misuse rules and dependencies,
guiding it through step-by-step reasoning. This evaluates
the full potential of CRYPTBARA’s hybrid approach by
combining all available contextual information.

Result analysis. summarizes the accuracy of crypto-
graphic API misuse detection across different prompt designs,
and illustrates the accuracy differences of prompt
designs compared to zero-shot prompting.

Although zero-shot prompting resulted in the fewest FPs,
it also failed to detect many misuses, because the model was
not given explicit misuse rules and dependencies, making it
difficult for the LLM to identify violations. Interestingly, FS1
resulted in a lower F1 score than the zero-shot baseline. We
hypothesize that, in the absence of explicit rules, the LLM
struggles to interpret the rich dependency information, whereas
in the zero-shot setting, the model may lean on its pre-trained
knowledge to make more coherent judgments. In contrast, FS2
significantly outperformed both zero-shot and FS1. Although
the presence of rules helped clarify what to look for, the lack
of structural context yielded seven FNs. Finally, the CoT set-
ting, which combines both rules and dependency information,
achieved the highest F1 score, demonstrating the effectiveness
of integrating both semantic criteria and structural context.

2) LLM backend: Next, we evaluate the accuracy of
CRYPTBARA using different LLM backends to analyze
how the choice of backend affects its effectiveness. We
compared three different LLM backends under the same
prompting design (CoT): OpenAI’s (1) GPT-4o-mini, (2)

30.0%
25.0%
20.0%
15.0%
10.0%
5.0%
0.0%
-5.0%
-10.0%

+25%
+19.8%

0,
1890, F11:6%

-1.6%

-5.9% -5.5%
Precision Recall F1 score
Few-shot (FS1) ™ Few-shot (FS2) m Chain-of_Thought
Fig. 5: Accuracy difference compared to zero-shot prompting.

-4.1%

Delta from Zero-shot (%)

-5.2%

TABLE VII: Accuracy on different LLM backends.
lGroup*[Backend [#TP #FP #FN #TN[Precision Recall F1 score[

GPT-3.5-turbo| 48 6 0 462| 88.89% 100.00% 94.12%
G1-1 LLaMA3 5 10 43 458| 33.33% 1042% 15.87%
GPT-40-mini | 48 6 0 462| 88.89% 100.00% 94.12%
GPT-3.5-turbo| 7 0 17 12[100.00% 29.17% 45.16%
G1-2 LLaMA3 17 0 7 12[100.00% 70.83% 82.93%
GPT-40-mini | 24 1 0 11| 96.00% 100.00% 97.96%
GPT-3.5-turbo| O 0 24 60| 0.00% 0.00% 0.00%
G1-3 LLaMA3 7 1 17 59| 87.50% 29.17% 43.75%
GPT-40-mini | 22 0 2 60[100.00% 91.67% 95.65%
GPT-3.5-turbo| 55 6 41 534| 90.16% 57.29% 70.06%
Total LLaMA3 29 11 67 529| 72.50% 3021% 42.65%
GPT-40-mini | 94 7 2 533| 93.07% 97.92% 95.43%

*We use the same group indices (IDX) as defined in

GPT-3.5-turbo, and Meta’s latest open source model, (3) LLaMA3
(LLaMA3-70B-8192). We selected these models because they
are widely available and achieve strong performance without
fine-tuning [15], [16], [21]. This reflects our goal of enabling
practical adoption in real-world development environments.

Result analysis. presents the experimental results.
We observed that GPT-40-mini achieved the highest F1 score
of 95.43%, while GPT-3.5-turbo and LLaMA3 reached 70.06%
and 42.65% F1 scores, respectively. Notably, GPT-40-mini
achieved the highest F1 score across all three groups (see
). GPT-3.5-turbo showed comparable performance to
GPT-40-mini in Group GI-1, but its accuracy dropped signifi-
cantly in the other groups. This may be because GPT-3.5-turbo
is more prone to overlooking subtle misuse patterns or less
capable of reasoning over complex prompt structures, even
when provided with sufficient dependency information. In con-
trast, LLaMA3 performed reasonably well in G1-2 and G1-3, but
detected only 5 out of 48 misuse cases in G1-1. This may be
due to its limited ability to integrate the provided dependency
context into accurate misuse reasoning, particularly in cases
requiring precise interpretation of control and data flow.

Answer to RQ2. Prompt design evaluation showed that
adding misuse rules and dependency information to the
prompt significantly improved accuracy. This highlights
the effectiveness of CRYPTBARA’s CoT-based prompting
strategy. In the LLM backend comparison, GPT-40-mini
outperformed others, achieving the highest F1 score.

C. Performance

We then measured the processing time per file to evaluate
CRYPTBARA’s performance. Each file in the two benchmarks
contains an average of 54 lines of Python code. For each file,
CRYPTBARA took an average of 41 s to extract dependencies
using the static analyzer, and 3 s to obtain a response from
the misuse detector with a single prompt (15 s for 5 prompts).
Therefore, on average, CRYPTBARA required 56 s to identify
cryptographic API misuses in a single Python file. Although
the processing time varied slightly depending on the number
of lines of code, the difference was not significant (i.e., within
10 s). Despite the relatively small number of lines in the file,
these results show that CRYPTBARA achieves precise analysis
with efficient processing.

Answer to RQ3. CRYPTBARA can detect cryptographic
API misuses in a single Python file in under one minute
on average, demonstrating its practical effectiveness.

D. Cryptographic API misuses in the wild

Finally, we applied CRYPTBARA to real-world, popular
Python repositories to identify previously unknown crypto-
graphic API misuses. We collected codebases from GitHub’s
popular Python repositories with more than 5,000 stargazers
and applied CRYPTBARA to analyze them.

As a result, CRYPTBARA identified 172 potential cryp-
tographic API misuses across 34 repositories. The detected
misuses varied in type, including hardcoded keys and IVs,
inappropriate iteration counts, and the use of insecure AES
modes (e.g., CBC). After manual analysis, we reported 22 of
these cases as potentially exploitable vulnerabilities. As of Aug
2025, four of the reported issues have been confirmed and
patched, and 11 are under discussion. In addition, seven cases
were confirmed as low-risk and not planned for patching.

illustrates a real-world misuse that was patched
following our report. This was found in DB-GPT (16.5 K GitHub
stars as of May 2025), an Al-native data application frame-
work. The misuse arose from configuring PBKDF2-HMAC-SHA256
with a low iteration count (100,000), which falls short of the
recommended value: according to security guidelines [13], a
secure configuration should use at least 600,000 iterations.
CRYPTBARA detected this issue, and upon reporting it to the
developers, the misuse was promptly patched.

shows another real-world case. This misuse in-
volves AES-CBC encryption with an IV deterministically de-
rived from user input (i.e., hardcoded). Because the same
IV is reused, identical plaintexts yield identical ciphertexts,
violating semantic security. Detecting this requires inter-
procedural analysis: the IV is set in init but used in encrypt().
CRYPTBARA identifies the static IV via dependency tracking,
and the LLM correctly reasons that reusing it in CBC mode is
insecure, even though the IV is not a constant. We reported
this issue to the development team, and they acknowledged
the vulnerability. As the patch has not yet been applied, we
redact specific details to prevent potential exploitation.

Listing 4: Real-world misuses patched by our report.

1 def _generate_ key from_password(

2 password: bytes, salt: OptionallUnion[tr, bytes]] = None
3):

4 if salt is None:

5 salt = os.urandom(16)

6 elif isinstance(salt, str):

7 salt = salt.encode()

8 kdf = PBKDF2HMAC(

9 algorithm=hashes.SHA256(), length=32, salt=salt,
10 — iterations=100000,

1+ iterations=800000,

)
13 key = base64.urlsafe_b64encode(kdf.derive(password))
14 return key, salt

Listing 5: Another real-world misuse case. As the patch has
not yet been released despite our disclosure request, we redact
package and class identifiers to prevent potential exploitation.

1 def pad(msg) :

2 pad_len = 16 - len(msg) % 16

3 return msg + bytes([pad_len] * pad_len

4

5 class LabelEncryptor :

6 def _ init__ (self, user_id: str):

7 key = hashlib.shal(user_id.encode()).digest()[:16]
8 self.iv = hashlib.sha256(key).digest()[:16]

9 self.key = key

10 def encrypt(self, msg: str) -> bytes:

1 cipher = AES.new(self.key, AES.MODE CBC, self.iv)
12 return cipher.encrypt(pad(msg.encode())

Answer to RQ4. CRYPTBARA successfully identified
previously unknown real-world cryptographic misuses,
including cases that were acknowledged and fixed by
developers, demonstrating its practical effectiveness.

V. DISCUSSION

1) LLMs without fine-tuning: In designing CRYPTBARA,
we intentionally avoided both fine-tuning LLMs and incor-
porating retrieval-augmented generation (RAG) mechanisms.
This design choice was grounded in a desire for practicality
and generalizability. Fine-tuning, while potentially improving
performance, introduces risks of overfitting to narrow patterns.
Similarly, RAG frameworks require additional components
such as vector databases, making them more complex to
deploy and maintain. In contrast, CRYPTBARA relies on
structured context-rich prompts. Our evaluation shows that
this lightweight design achieves high accuracy in various
misuse patterns, supporting the effectiveness of prompt-based
reasoning when combined with structured code dependencies.

2) Limitations and future work.: First, CRYPTBARA strug-
gles to analyze indirect calls. When cryptographic objects
are created through indirect calls, CRYPTBARA may fail to
reconstruct the full call chain. To address this limitation, we
plan to enhance CRYPTBARA’s interprocedural analysis to
better resolve indirect object constructions. Second, although
CRYPTBARA effectively detects a wide range of real-world
cryptographic misuses, there remain cases that are inherently
difficult to analyze statically. For example, API usage hidden

behind dynamic constructs such as getattr or reflective calls
often prevents precise identification of misuse. Addressing
such dynamic behaviors, possibly through hybrid or runtime-
assisted analysis, remains a key direction for future work.
Last, CRYPTBARA assumes that source code is available and
analyzable. However, in real-world scenarios, obfuscated logic
or the use of native extensions (e.g., C/C++ modules) may
limit static analysis and reduce detection accuracy.

3) Threats to validity: Although we evaluate CRYPTBARA
using both the widely adopted PyCryptoBench and an addi-
tional benchmark curated from real-world misuse cases, these
may not fully represent the entire spectrum of cryptographic
API misuses in Python. Second, the manual labeling process is
used to establish ground truth for evaluation. Although we fol-
lowed established guidelines and performed cross-validation
to reduce bias, human error may still affect the accuracy
of the labels. Third, detection was evaluated using manually
labeled ground truth, which may be ambiguous when LLMs
depend on implicit context not reflected in the labels. Last,
LLM predictions are non-deterministic and influenced by prior
knowledge, which means the results may vary across different
queries. Although CRYPTBARA issues each query five times
and applies a majority vote to determine the final decision,
this may still be insufficient in eliminating uncertainty.

VI. RELATED WORK

1) Python cryptographic API misuse detection: Several
existing approaches aim to detect cryptographic API misuse
in Python code. Acar et al. [3] conducted a usability study
on libraries such as PyCrypto and M2Crypto, highlighting
that poor documentation and insecure defaults often led to
misuse. Wickert et al. [7] proposed LICMA, a rule-based
tool, and found that Python had fewer misuses than Java
but more than C, with many hidden in dependencies. Frantz
et al. [8] introduced Cryptolation, a static analysis tool that
leverages variable inference to detect cryptographic misuses
in Python, and presented PyCryptoBench, a benchmark dataset
comprising 1,836 labeled files for evaluation. Guo et al. [9]
developed CryptoPyt, a static taint analysis tool using a
custom AST to detect 17 misuse types. Gorski et al. [22]
proposed security-advice, which provides runtime warnings
to improve secure coding practices. Although these studies
have advanced solutions for identifying Python cryptographic
API misuse, they have not sufficiently considered issues that
arise in complex real-world Python code (e.g., context frag-
mentation), have limited inter-procedural analysis capabilities,
and could not effectively analyze the semantics of Python
code (see). In contrast, CRYPTBARA demonstrates its
distinctiveness by systematically classifying and identifying
dependencies necessary for cryptographic API misuse analysis
and leveraging dependency-guided LLM semantic reasoning
to understand code semantics, thereby successfully identifying
cryptographic API misuse (see).

2) Detecting cryptographic API misuse in other languages:
Several studies have explored cryptographic API misuse detec-

tion in other languages (e.g., [1 0], [23]-[33]).Some approaches
rely on slicing techniques to detect misuses [23]-[25]. Pic-
colboni et al. [10] proposed CryLogger, a dynamic tool that
monitors API calls at runtime. Paletov et al. [26] introduced
DiffCode, which mines misuse patterns from GitHub commits
and defines 13 rules using DAG-based graph abstraction. Cryp-
toGo [27] and Gopher [28] use static taint analysis, with the
latter supporting 31 rules via slicing and symbolic execution.
However, applying these techniques to Python necessitates
addressing its dynamic semantics and establishing language-
specific rules. Thus, without substantial modifications, their
effectiveness in Python environments remains limited.

3) Detecting general API misuses: Many studies have
addressed API misuse across various domains (e.g., [34]-
[41]). However, these approaches do not address the unique
challenges posed by Python’s dynamic nature, particularly
in the context of cryptographic APIs. Moreover, software
composition analysis (e.g., [42]-[46]) can identify vulnerable
versions of cryptographic libraries; however, although these
are effective at detecting the use of vulnerable APIs, they
cannot be applied to identifying API misuses.

VII. CONCLUSION

In this paper, we presented CRYPTBARA, a hybrid de-
tection framework that combines static dependency analy-
sis with prompt-based LLM reasoning to precisely detect
Python cryptographic API misuses. Our experiments demon-
strate that CRYPTBARA outperforms state-of-the-art tools. It
further uncovered 172 previously unknown misuses, with 22
critical cases reported to and confirmed by developers. Using
CRYPTBARA, developers can identify potential misuses of
cryptographic APIs in their Python code, ultimately improving
the security and reliability of their software systems.

DATA AVAILABILITY

The source code and dataset of CRYPTBARA are available
at

ACKNOWLEDGMENT

This work was supported by the Institute of Information
& Communications Technology Planning & Evaluation (II'TP)
grant funded by the Korea government (MSIT) (No.RS-2022-
11220277, Development of SBOM Technologies for Securing
Software Supply Chains, and No.RS-2024-00440780, Devel-
opment of Automated SBOM and VEX Verification Tech-
nologies for Securing Software Supply Chains), the National
Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (RS-2025-00517788, Research on
Intelligent SBOM Generation and Automated Vulnerability
Analysis through Multi-level Code Analysis), and the Culture,
Sports and Tourism R&D Program through the Korea Creative
Content Agency grant funded by the Ministry of Culture,
Sports and Tourism (International Collaborative Research and
Global Talent Development for the Development of Copyright
Management and Protection Technologies for Generative Al,
RS-2024-00345025).

https://github.com/choseogyeong/CRYPTBARA

[1]

[2]

[3]

[4]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

REFERENCES

M. Green and M. Smith, “Developers are Not the Enemy!: The Need
for Usable Security APIs,” IEEE Security & Privacy, vol. 14, no. 5, pp.
4046, 2016.

Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky,
“You Get Where You're Looking For: The Impact of Information
Sources on Code Security,” in Proceedings of the 2016 IEEE Symposium
on Security and Privacy (S&P). 1EEE, 2016, pp. 289-305.

Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim, M. L. Mazurek, and
C. Stransky, “Comparing the Usability of Cryptographic APIs,” in 2017
IEEE Symposium on Security and Privacy (S&P). 1EEE, 2017, pp.
154-171.

N. Meng, S. Nagy, D. D. Yao, W. Zhuang, and G. A. Argoty, “Secure
Coding Practices in Java: Challenges and Vulnerabilities,” in Proceed-
ings of the 40th International Conference on Software Engineering
(ICSE ’18). New York, NY, USA: ACM, 2018, pp. 372-383.

D. S. Oliveira, T. Lin, M. S. Rahman, R. Akefirad, D. Ellis, E. Perez,
R. Bobhate, L. A. DeLong, J. Cappos, and Y. Brun, “API Blindspots:
Why Experienced Developers Write Vulnerable Code,” in Fourteenth
Symposium on Usable Privacy and Security (SOUPS 2018), 2018, pp.
315-328.

M. A. Rahman, M. S. Hossain, and M. S. Uddin, “Cryptography in
Python: A comprehensive overview and implementation,” IEEE Access,
vol. 10, pp. 123456-123 470, 2022.

A.-K. Wickert, L. Baumgirtner, F. Breitfelder, and M. Mezini, “Python
Crypto Misuses in the Wild,” in Proc. 15th Int. Symp. on Empirical
Software Engineering and Measurement (ESEM). ACM, 2021, pp.
31:1-31:6.

M. Frantz, Y. Xiao, T. S. Pias, N. Meng, and D. Yao, “Methods and
Benchmark for Detecting Cryptographic API Misuses in Python,” IEEE
Transactions on Software Engineering, vol. 50, no. 5, pp. 1118-1129,
2024.

X. Guo, S. Jia, J. Lin, Y. Ma, F. Zheng, G. Li, B. Xu, Y. Cheng, and K. Ji,
“CryptoPyt: Unraveling Python Cryptographic APIs Misuse with Precise
Static Taint Analysis,” in 2024 Annual Computer Security Applications
Conference (ACSAC). 1EEE, 2024, pp. 1075-1091.

L. Piccolboni, G. Di Guglielmo, L. P. Carloni, and S. Sethumadhavan,
“CRYLOGGER: Detecting Crypto Misuses Dynamically,” in Proceed-
ings of the 42nd IEEE Symposium on Security and Privacy (S&P).
IEEE, 2021, pp. 1972-1989.

F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and Discov-
ering Vulnerabilities with Code Property Graphs,” in Proceedings of the
35th IEEE Symposium on Security and Privacy (S&P). IEEE, 2014,
pp. 590-604.

OWASP Foundation, “OWASP Application Security Verification Stan-
dard 4.0.3,” Online, 2021, available at:

, “OWASP Password Storage Cheat Sheet,”
available at:

Online, 2021,

National Institute of Standards and Technology, “NIST Special Pub-
lication 800-133 Revision 2: Recommendation for Cryptographic Key
Generation,” Online, 2020, available at:

J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al., “GPT-4
Technical Report,” arXiv preprint arXiv:2303.08774, 2023.

P. Liu, J. Liu, L. Fu, K. Lu, Y. Xia, X. Zhang, W. Chen, H. Weng,
S. Ji, and W. Wang, “Exploring ChatGPT’s Capabilities on Vulnerability
Management,” in 33rd USENIX Security Symposium (USENIX Security
24), 2024, pp. 811-828.

S. Woo, E. Choi, and H. Lee, “A large-scale analysis of the effectiveness
of publicly reported security patches,” Computers & Security, p. 104181,
2024.

S. Woo, H. Hong, E. Choi, and H. Lee, “MOVERY: A Precise Approach
for Modified Vulnerable Code Clone Discovery from Modified Open-
Source Software Components,” in Proceedings of the 31st USENIX
Security Symposium (Security), 2022, pp. 3037-3053.

S. Woo, E. Choi, H. Lee, and H. Oh, “V1SCAN: Discovering 1-day Vul-
nerabilities in Reused C/C++ Open-source Software Components Using
Code Classification Techniques,” in 32nd USENIX Security Symposium
(USENIX Security 23), 2023, pp. 6541-6556.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

(35]

(36]

(371

[38]

[39]

S. Kim, S. Woo, H. Lee, and H. Oh, “VUDDY: A Scalable Approach
for Vulnerable Code Clone Discovery,” in Proceedings of the 38th IEEE
Symposium on Security and Privacy (S&P), 2017, pp. 595-614.

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Roziere, N. Goyal, E. Hambro, F. Azhar et al., “LLaMA:
Open and Efficient Foundation Language Models,” arXiv preprint
arXiv:2302.13971, 2023.

P. L. Gorski, L. L. Tacono, D. Wermke, C. Stransky, S. Moller, Y. Acar,
and S. Fahl, “Developers Deserve Security Warnings, Too: On the Effect
of Integrated Security Advice on Cryptographic {API} Misuse,” in
Fourteenth Symposium on Usable Privacy and Security (SOUPS 2018),
2018, pp. 265-281.

M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An Em-
pirical Study of Cryptographic Misuse in Android Applications,” in
Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, 2013, pp. 73-84.

1. Muslukhov, Y. Boshmaf, and K. Beznosov, “Source Attribution of
Cryptographic API Misuse in Android Applications,” in Proceedings
of the 2018 on Asia Conference on Computer and Communications
Security, 2018, pp. 133-146.

S. Rahaman, H. R. Nguyen, and T. N. Nguyen, “CryptoGuard: High
Precision Detection of Cryptographic Vulnerabilities in Massive-sized
Java Projects,” in Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2019, pp. 2455-2472.
R. Paletov, P. Tsankov, V. Raychev, and M. Vechev, “Inferring Crypto
API Rules from Code Changes,” in Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI). ACM, 2018, pp. 456-470.

W. Li, S. Jia, L. Liu, F. Zheng, Y. Ma, and J. Lin, “CryptoGo: Automatic
Detection of Go Cryptographic API Misuses,” in Annual Computer
Security Applications Conference (ACSAC), 2022.

Y. Zhang, B. Li, J. Lin, L. Li, J. Bai, S. Jia, and Q. Wu, “Gopher:
High-Precision and Deep-Dive Detection of Cryptographic API Misuse
in the Go Ecosystem,” in Proceedings of the 2024 on ACM SIGSAC
Conference on Computer and Communications Security, 2024.

S. Kriiger, K. Ali, E. Bodden, and M. Mezini, “CogniCrypt: Support-
ing Developers in Using Cryptography,” in Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). 1IEEE, 2017, pp. 931-936.

S. Kriiger, J. Spith, K. Ali, E. Bodden, and M. Mezini, “CrySL: An
Extensible Approach to Validating the Correct Usage of Cryptographic
APIs,” IEEE Transactions on Software Engineering, vol. 47, no. 11, pp.
2341-2358, 2019.

Y. Zhang, M. M. A. Kabir, Y. Xiao, D. Yao, and N. Meng, “Automatic
Detection of Java Cryptographic API Misuses: Are We There Yet?”
IEEE Transactions on Software Engineering, vol. 49, no. 1, pp. 288—
303, 2022.

A. S. Ami, N. Cooper, K. Kafle, K. Moran, D. Poshyvanyk, and
A. Nadkarni, “Why Crypto-detectors Fail: A Systematic Evaluation of
Cryptographic Misuse Detection Techniques,” in [EEE Symposium on
Security and Privacy (S&P). 1EEE, 2022, pp. 614-631.

B. He, V. Rastogi, V. Balakrishnan, L. Ying, and W. Enck, “Vetting SSL
Usage in Applications with SSLINT,” in Proceedings of the 2015 IEEE
Symposium on Security and Privacy (S&P). 1EEE, 2015, pp. 519-534.
S. Amann, S. Amann, S. Nadi, and M. Mezini, “MUBench: A Bench-
mark for API-Misuse Detectors,” in Proceedings of the 13th Interna-
tional Conference on Mining Software Repositories (MSR). ACM, 2016,
pp. 464-467.

X. Li, J. Jiang, S. Benton, Y. Xiong, and L. Zhang, “A Large-scale
Study on API Misuses in the Wild,” in IEEE International Conference
on Software Testing, Verification and Validation (ICST), 2021.

C. Wan, S. Liu, H. Hoffmann, M. Maire, and S. Lu, “Are Machine
Learning Cloud APIs Used Correctly?” in I[EEE/ACM International
Conference on Software Engineering (ICSE), 2021.

M. Wei, N. S. Harzevili, Y. Huang, J. Yang, J. Wang, and S. Wang,
“Demystifying and Detecting Misuses of Deep Learning APIs,” in
ACM/IEEE International Conference on Software Engineering (ICSE),
2024.

L. Yun, C. Lee, X. Wang, T. Kim, and M. Naik, “APISan: Sanitizing API
Usages through Semantic Cross-checking,” in 25th USENIX Security
Symposium. USENIX Association, 2016, pp. 363-378.

Z. Gu, J. Wu, J. Liu, M. Zhou, and M. Gu, “An Empirical Study on Api-
Misuse Bugs in Open-Source C Programs,” in 2019 IEEE 43rd annual

https://github.com/OWASP/ASVS
https://github.com/OWASP/ASVS
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://doi.org/10.6028/NIST.SP.800-133r2
https://doi.org/10.6028/NIST.SP.800-133r2

[40]

[41]

[42]

[43]

[44]

[45]

[46]

computer software and applications conference (COMPSAC), vol. 1.
IEEE, 2019, pp. 11-20.

Z. Li, A. Machiry, B. Chen, M. Naik, K. Wang, and L. Song, “AR-
BITRAR: User-Guided API Misuse Detection,” in IEEE Symposium on
Security and Privacy (S&P), 2021.

S. Bae, H. Cho, I. Lim, and S. Ryu, “SAFEWAPI: Web API Misuse
Detector for Web Applications,” in Proceedings of the 2014 ACM
SIGSOFT International Symposium on the Foundations of Software
Engineering, 2014, pp. 1-11.

J. Mahon, C. Hou, and Z. Yao, “PyPitfall: Dependency Chaos and
Software Supply Chain Vulnerabilities in Python,” arXiv preprint
arXiv:2507.18075, 2025.

S. Woo, S. Park, S. Kim, H. Lee, and H. Oh, “CENTRIS: A Precise
and Scalable Approach for Identifying Modified Open-Source Software
Reuse,” in Proceedings of the IEEE/ACM 43rd International Conference
on Software Engineering (ICSE), 2021, pp. 860—872.

Y. Na, S. Woo, J. Lee, and H. Lee, “CNEPS: A Precise Approach
for Examining Dependencies Among Third-Party C/C++ Open-Source
Components,” in Proceedings of the 46th International Conference on
Software Engineering (ICSE), 2024, pp. 2918-2929.

Y. Choi and S. Woo, “TIVER: Identifying Adaptive Versions of C/C++
Third-Party Open-Source Components Using a Code Clustering Tech-
nique,” in Proceedings of the 47th International Conference on Software
Engineering (ICSE). IEEE, 2025.

R. Duan, A. Bijlani, M. Xu, T. Kim, and W. Lee, “Identifying Open-
Source License Violation and 1-day Security Risk at Large Scale,” in
Proceedings of the 24th ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2017, pp. 2169-2185.

	Introduction
	Problem statement and challenges
	Problem statement
	Challenges

	Design and implementation of Cryptbara
	Static dependency extraction (P1)
	Intra-procedural analysis
	Inter-procedural analysis

	LLM-based misuse detection (P2)
	Rules for cryptographic API misuse
	Prompt construction

	Implementation of Cryptbara

	Evaluation
	Accuracy
	Benchmark dataset
	Methodology
	Comparison on PyCryptoBench.
	Comparison on real-world dataset.
	Indirect comparison with CryptoPyt

	Effectiveness
	Prompt design
	LLM backend

	Performance
	Cryptographic API misuses in the wild

	Discussion
	LLMs without fine-tuning
	Limitations and future work.
	Threats to validity

	Related work
	Python cryptographic API misuse detection
	Detecting cryptographic API misuse in other languages
	Detecting general API misuses

	Conclusion
	References

