
OCTOPOCS: Automatic Verification of Propagated
Vulnerable Code Using Reformed Proofs of Concept

Seongkyeong Kwon, Seunghoon Woo, Gangmo Seong, Heejo Lee∗
Korea University, {bible kwon, seunghoonwoo, geldkang, heejo}@korea.ac.kr

Abstract—Addressing vulnerability propagation has become a
major issue in software ecosystems. Existing approaches hold
the promise of detecting widespread vulnerabilities but cannot
be applied to verify effectively whether propagated vulnera-
ble code still poses threats. We present OCTOPOCS, which
uses a reformed Proof-of-Concept (PoC), to verify whether a
vulnerability is propagated. Using context-aware taint analysis,
OCTOPOCS extracts crash primitives (the parts used in the
shared code area between the original vulnerable software and
propagated software) from the original PoC. OCTOPOCS then
utilizes directed symbolic execution to generate guiding inputs
that direct the execution of the propagated software from the
entry point to the shared code area. Thereafter, OCTOPOCS
creates a new PoC by combining crash primitives and guiding
inputs. It finally verifies the propagated vulnerability using the
created PoC. We evaluated OCTOPOCS with 15 real-world C
and C++ vulnerable software pairs, with results showing that
OCTOPOCS successfully verified 14 propagated vulnerabilities.

Index Terms—Vulnerability propagation; Proofs-of-Concept;
taint analysis; symbolic execution.

I. INTRODUCTION

Recent years have seen a considerable increase in the
number and reuse of open-source software (OSS) [1]–[4].
Software developers benefit from this practice by reusing
functionalities from reliable OSSs rather than re-inventing
complicated wheels. However, as pieces of code are often
reused by multiple parties, vulnerabilities discovered in one
code propagate considerably to other software, resulting in a
threat to the security of OSS ecosystems [5], [6].

One effective means of resolving this issue is to leverage
vulnerable code clone detection techniques [6]–[8] that detect
propagated vulnerable code clones in various software pro-
grams. Using these techniques, developers can detect vulner-
abilities that have been propagated to their software and can
further apply proper patches to vulnerabilities.

Despite their effectiveness, determining whether a vulner-
able code clone can actually be triggered is mostly beyond
the scope of existing vulnerable clone detection techniques.
Indeed, a vulnerable code clone found in specific software does
not always affect that software. This is primarily because the
cloned vulnerable code (1) may not be called in the propagated
software, (2) may be excluded during software build process,
and further, (3) developers of propagated software may insert
a patch of the vulnerable code that prevents the propagated
vulnerability from being triggered.

* Heejo Lee is the corresponding author.

It is natural to fix (e.g., patch) all detected vulnerabilities.
However, this task not only incurs considerable costs and
effort [9] but may also compromise the maintenance of the
software project, for example, blindly removing vulnerable
code can lead to syntax errors. Therefore, in addition to
detecting propagated vulnerabilities, it is important to verify
whether the propagated vulnerable code can still be triggered
to achieve an efficient vulnerability management process such
as prioritizing patching for more dangerous vulnerabilities.

To the best of our knowledge, none of the existing ap-
proaches are capable of verifying the triggerability of prop-
agated vulnerable code effectively. On the one hand, sev-
eral exploit primitive (i.e., exploitable state) identification
approaches exist that find triggerable vulnerabilities [10]–[15].
Yet, because these approaches focus only on detecting generic
bugs or crashes in a software project, they not only consume
considerable time in verifying specific (i.e., propagated) vul-
nerabilities, they also can hardly determine the propagated
vulnerability is not triggerable (see Section VI).

On the other hand, a Proof-of-Concept (PoC), a method for
demonstrating the feasibility of a vulnerability, of the original
vulnerability can be used to verify a propagated vulnerability.
However, the execution path to reach the vulnerable code of
the propagated software is typically different from that of the
original vulnerable software, and thus, the PoC of the original
vulnerability often fails to verify the propagated vulnerability.

Our approach. To overcome the shortcomings, we present a
novel tool called OCTOPOCS, which is an implementation of
an approach that uses a reformed PoC to verify whether a prop-
agated vulnerable code can still be triggered in the propagated
software. OCTOPOCS focuses on the C/C++ vulnerabilities
with malformed file type PoCs (see Section II-A).

Let the original vulnerable software be S and the propagated
software be T . To reform a PoC, OCTOPOCS (1) extracts
the reusable part (called crash primitive) of the original PoC,
which is used in the shared code area between S and T ,
(2) generates byte characters (called guiding inputs) that lead
the execution flow of T from the entry point to the shared
code area, and then (3) combines crash primitives and guiding
inputs to create a new PoC.

We start with the idea that the part of a PoC used in the
shared code between S and T can be reusable. We call this
part the crash primitive. Note that the crash primitive may
be used multiple times when triggering a single vulnerability.
Thus, to extract the crash primitive from the original PoC,

1



OCTOPOCS uses context-aware taint analysis, which is a type
of taint analysis that recognizes the context in which and the
number of times the program execution of S enters the shared
code area to trigger the vulnerability. OCTOPOCS extracts and
stores the crash primitive of PoC used in the different contexts
in a unit called a bunch (see Section III-A).

Thereafter, OCTOPOCS generates guiding inputs that can
lead to the execution flow of T from the entry point to the
shared code area. In this process, naively using a symbolic
execution often fails to generate guiding inputs as a result of
the path explosion problem. Thus, OCTOPOCS uses directed
symbolic execution that can avoid path explosion. Specifically,
OCTOPOCS (1) analyzes the control-flow graph (CFG) of
T , (2) finds the correct path from the entry point of T to
the shared code area through backward path finding, and (3)
uses the correct path to designate the direction of symbolic
execution to generate guiding inputs (see Section III-B).

OCTOPOCS then combines the crash primitive and guiding
inputs to create a new PoC. In this process, each crash
primitive is inserted into the new PoC at a different location
(i.e., offset) than that of the original PoC. To accomplish this,
whenever the execution flow of T encounters the shared code
area, OCTOPOCS repeatedly inserts a corresponding bunch
into a new PoC based on the file position indicator. For
example, the bunch extracted when the first shared code area
is reached in S is also inserted into the new PoC when the
first shared code area is encountered in T (see Section III-C).
Finally, OCTOPOCS uses a reformed PoC to verify whether
the propagated vulnerability is still triggered in T .

Evaluation. To evaluate OCTOPOCS, we collected 15 real-
world software pairs; each software pair shared the same
known vulnerable code (where its PoC is publicly available)
and received input as a file format (see Section V-A).

When OCTOPOCS was applied using the collected software
pairs, we confirmed that it successfully verified the propagated
vulnerable code for 14 pairs. In particular, OCTOPOCS dis-
covered that propagated vulnerabilities could be triggered for
the cases of nine software pairs, and for the remaining five
cases, OCTOPOCS verified that the vulnerabilities were not
propagated (i.e., the vulnerable code could not be triggered).

We then compared the effectiveness of OCTOPOCS with
that of existing approaches, AFLFast [16] and AFLGo [17].
We used three software pairs in which many changes were
made in the original PoC during the process of PoC reform.
Although AFLFast and AFLGo had been operating for more
than 20 h, we confirmed that AFLFast was able to verify only
one of the cases, and AFLGo failed to verify any of them,
whereas OCTOPOCS could verify the vulnerabilities for all
three cases within 15 min (see Section V).

OCTOPOCS further discovered three software programs in
which the propagated vulnerability was triggered even in
their latest versions: libgdx, tjbench in Mozilla mozjpeg,
and pdftops in Xpdf (see Section V-B). We reported this
information to all of the development teams. Libgdx and Xpdf
teams immediately patched the vulnerability; specifically, the

Xpdf team further assigned the new CVE ID for this vulner-
ability (CVE-2020-35376). Mozilla team responded that the
vulnerability would be patched immediately.

This paper makes the following three contributions:
• We present a novel tool, OCTOPOCS, that can effectively

verify the triggerability of propagated vulnerable code
using a reformed PoC. The source code of OCTOPOCS
is available at https://github.com/blbi/OctoPoCs/.

• Our key technical contribution is the PoC reforming tech-
nique, which extracts the crash primitive using context-
aware taint analysis and generates guiding inputs using
directed symbolic execution.

• We demonstrate the effectiveness of OCTOPOCS using 15
real-world software programs; OCTOPOCS successfully
verified the propagated vulnerable code for 14 programs.

II. APPROACH OF OCTOPOCS

In this section, we introduce background information, key
features of OCTOPOCS, and motivating examples.

A. Background

Verification of propagated vulnerable code. To avoid con-
fusion, we define the manner in which the propagated vul-
nerability used in this paper was verified. First, we assumed
that the vulnerable code was propagated from the original
vulnerable software S to the propagated software T . However,
the presence of vulnerable codes does not always indicate
that vulnerability can be triggered. Therefore, we checked
whether the vulnerability could still be triggered in T . The
result was that the vulnerability was either triggerable or
not triggerable. This task was defined as the verification of
propagated vulnerable code.

PoC. In software security, a PoC indicates a method for
demonstrating the feasibility of a vulnerability. Various types
of PoC exist, and we classified them into the following four
categories [18]:

(1) Shell command type;
(2) Program type (e.g., python script code);
(3) Malformed string type;
(4) Malformed file type (e.g., malicious image file).

OCTOPOCS verifies propagated vulnerabilities by reforming
the original PoC and utilizing it. Notably, each type of PoC
requires a different reforming approach. For example, in the
cases of malformed file type PoCs, OCTOPOCS must modify
the byte characters within the original PoC. In this paper,
we primarily focused on malformed file type PoCs based on
our experimental observations. After investigating all reported
Common Vulnerabilities and Exposures (CVE) from 2016 to
2019, we discovered 2,455 CVEs that include Bugzilla-report
URLs as a reference. Of the total, 1,190 CVE vulnerabilities
were reported along with a PoC, and we found that 823
PoCs (70%) were malicious file types, whereas all other types
accounted for only 30%. Therefore, OCTOPOCS targets the

2

https://github.com/blbi/OctoPoCs/


𝑺

𝒆𝒑

𝒑𝒐𝒄

ℓ𝒗

𝒑
𝒒

𝒑

𝒒

𝒑𝒐𝒄′ 𝒓
𝒒

𝑻

𝒆𝒑

ℓ𝒗

𝒒

𝒓

Fig. 1: Depiction of vulnerability propagation and the concept
of PoC reforming.

PoC of the malicious file type, which accounts for the largest
portion of all PoC types.

Taint analysis. Taint analysis is a technique that tracks an
untrusted input in the software and determines which memory
addresses and registers are affected [19]–[21]. The main idea
of taint analysis is to continuously mark memory addresses and
registers that belong to the data flow of untrusted input. With
the help of taint analysis, we can track memory addresses and
registers that can be controlled by a specific untrusted input.

Symbolic execution. Symbolic execution is a software anal-
ysis technique, which executes a software program with sym-
bolic variables and identifies some constraints of the symbolic
variables under each branch condition. In addition, symbolic
execution produces formulas for the symbolic variables ac-
cording to the constraints [22]–[24]. As a result, we can
determine which values are needed to reach a specific location
in the program by solving the formulas of symbolic variables.

B. Overview of OCTOPOCS

Figure 1 presents the concepts of vulnerability propagation
and PoC reform used in this paper, and Table I provides
detailed descriptions of the defined notations. We use these
notations throughout this paper.

Note that a file-type PoC is composed of byte characters.
When poc is given as the input file to the software, the
execution path of the software is determined by the byte
characters contained in poc. If poc is capable of verifying v
in S, the execution path of S should eventually reach v. Now,
let us assume that the vulnerable code has propagated from
S to T . At this time, the internal execution path of `, which
contains the actual vulnerable code, does not be changed as
shown in Figure 1. By contrast, the execution path of T from
its entry point to ep mostly differs from that of S.

The goal of OCTOPOCS is to verify propagated vulnerable
code can still be triggered in T using an automatically gener-
ated poc′. OCTOPOCS consists of the following four phases:
(1) extracting crash primitives from poc (q in Figure 1), (2)
generating guiding inputs (r in Figure 1), (3) combining the
crash primitives and guiding inputs to create a new PoC (poc′),
and (4) verifying v in T using poc′. The detailed design of
OCTOPOCS is provided in Section III.

TABLE I: Defined notations and descriptions.

Notation Description
S : Original software where the vulnerability originated.

T : Software from which the vulnerability has propagated.

v : A known vulnerability.

` : A set of functions shared by both S and T .

q : Crash primitive.

p, r : Guiding inputs.

ep : Entry point of `. This ep is the function called
first in ` in the process of triggering v.

poc : An input file (PoC) that triggers v in S.

poc′ : An input file (PoC) that triggers v in T .

C. Motivating example

Triggered case. In 2017, a null pointer dereference vul-
nerability was discovered in the mutool binary of MuPDF
software [25]. The vulnerable code originated in OpenJPEG
and then propagated to MuPDF, which reused the OpenJPEG
codebase. This vulnerability was triggered when a malicious
JPEG2000 image file (e.g., j2k file) was decoded. However,
because the mutool binary can receive only a PDF file as
input, even if the malicious j2k file had been given to the
mutool binary, the vulnerability would not have manifested,
as shown in Figure 2.

(a) opj_dump

CRASH

(b) mutool

CRASH

Fig. 2: Depiction of vulnerability verification in mutool
through PoC reforming.

Based on this, OCTOPOCS first generates a guiding input
for the mutool binary by changing the malicious image file to
a PDF file format. OCTOPOCS then creates a new poc (poc′)
by combining the crash primitive of the original poc and the
guiding input. It can then successfully verify the propagated
vulnerability within the mutool binary.

Non triggered case. In 2016, a stack-based buffer overflow
vulnerability was discovered in LibTIFF, which could cause a
denial of service attack (CVE-2016-10095). This vulnerability
originated in the tiffsplit binary in LibTIFF. The vulnera-
ble code snippet is shown in Listing 1.

3



Listing 1: The vulnerable code snippet in tiffsplit.
1 //The vulnerability appears when "tag == 0x13d"

2 static int

3 _TIFFVGetField (TIFF* tif, uint32 tag, va_list ap)

4 {...

5 uint32 standard_tag = tag;

6 ...

7 switch (standard_tag) {

8 case TIFFTAG_SUBFILETYPE:

9 *va_arg(ap, uint32*) = td->td_subfiletype;

10 break;

11 case TIFFTAG_IMAGEWIDTH:

12 *va_arg(ap, uint32*) = td->td_imagewidth;

13 break;

14 ...}

Specifically, this vulnerability is triggered when the “tag”
parameter is 0x13d. We discovered that the tiftoimage function
in the opj_compress binary of OpenJPEG contains the same
vulnerable code. However, the tiftoimage function receives
only hard-coded seven “tag” values as parameters except
for the 0x13d value that causes the actual vulnerability.
Uncovering the fact that propagated vulnerable code cannot
be triggered is crucial for prioritizing vulnerability patches.
When OCTOPOCS tried to generate poc′, it discovered that
generating a guiding input was infeasible, indicating that the
vulnerability could be triggered in the opj_compress binary.

Existing exploit primitive identification approaches are not
designed to verify such propagated vulnerabilities. In partic-
ular, these approaches are not applicable to determine the
fact that the vulnerabilities in propagated code could not be
triggered. Furthermore, these approaches often require a huge
amount of time to verify a triggerable propagated vulnerability.
For example, we ran AFLFast [16] on the mutool binary for
20 h, but it failed to verify the aforementioned vulnerabil-
ity [25] in the “triggered case” part.

III. DESIGN OF OCTOPOCS

In this section, we describe the main design of OCTOPOCS.

Design assumption. We assume that OCTOPOCS, by its
ability to leverage existing vulnerable clone detection tech-
niques (e.g., [6], [8]), already knows the S and T pairs
whereby a vulnerable code has propagated from S to T .
Given the source code of S and T , the methodology of the
existing vulnerable clone detection technique allows us to
detect whether a vulnerable code has propagated from S to
T . In addition, we can also find `, that is, the shared functions
between S and T by using its mechanism, which is based on
the code clone detection technique. Therefore, we assume that
the initial inputs of OCTOPOCS are S, T , poc, and `.

Design overview. Figure 3 illustrates the high-level workflow
of OCTOPOCS. OCTOPOCS consists of the following four
phases: (1) P1 for extracting crash primitive, (2) P2 for
generating guiding input, (3) P3 for combining crash primitive
and guiding input to generate a new PoC, and (4) P4 for
verifying the propagated vulnerable code.

𝑞

𝑻, 𝒆𝒑

𝑞 𝑟

𝑆, 𝑇, 𝑝𝑜𝑐, ℓ

𝑺, 𝒑𝒐𝒄, 𝒆𝒑

𝒒 𝒓
𝒑𝒐𝒄

𝑟

Fig. 3: High-level workflow of OCTOPOCS. OCTOPOCS
consists of four phases (P1 to P4), and a final output is poc′,
which is used to verify propagated vulnerabilities.

In P1, for given S, ep, and poc, OCTOPOCS extracts crash
primitives of poc (i.e., q), which are the reusable parts of poc,
by utilizing context-aware taint analysis:

q = P1(S, ep, poc)

In P2, for given T and ep, OCTOPOCS generates the guiding
input r, which is a set of byte characters that lead to the
program execution flow to ep, by using directed symbolic
execution:

r = P2(T, ep)

In P3, for given q, r, and T , OCTOPOCS combines q and r
to generates poc′:

poc′ = P3(T, q, r)

Finally, in P4, OCTOPOCS verifies the propagated vulnerabil-
ity in T using poc′.

Preprocessing. Before generating poc′, OCTOPOCS first iden-
tifies ep by using backtrace function [26]. This function
enables OCTOPOCS to check which functions are called (i.e.,
callstack) when the vulnerability v in S is triggered by poc.
Among the called functions, we define a function as ep when
it satisfies the following two conditions: (1) it should belong
to ` and (2) it should be the bottommost function included in
the callstack when v is triggered. In other words, ep is the
first function to be called in `. Subsequently, the discovered
ep is utilized to generate poc′.

A. Extracting crash primitive phase (P1)

Phase overview. This phase starts with three inputs: S, poc,
and ep. The goal of P1 is to extract the crash primitive from
poc which is the reusable part when reforming poc′. We
previously defined the shared parts between S and T as `
(see Figure 1). In other words, the problem of extracting the
crash primitive is converted into a problem of extracting the
specific bytes of poc used in `.

Specifying the memory area of interest. To extract crash
primitives, OCTOPOCS must monitor which bytes of poc are
used in each execution flow of S when S is executed with
poc. To this end, OCTOPOCS first specifies the memory area
to which the bytes of poc are uploaded. Note that input file data
are stored in memory primarily by using two methods: using

4



0x0 0x1 0x2

0xffff1111
…

MemAddr Offset Value

0xffff1111 0x0 AA

0xffff1112 0x1 BB

0xffff1113 0x2 CC

Fig. 4: Designation flow for the memory area to be monitored.

a file-read function and using a memory-mapping function.
Hence, OCTOPOCS hooks all file-read and memory-mapping
functions in S, including poc as the parameter. This can
be confirmed through the file descriptor [27]. OCTOPOCS
designates all memory addresses where poc bytes are uploaded
as the monitoring area. Each memory address value is stored
along with the corresponding offset of the file byte that affected
the memory address. The example flow for specifying the
memory area to be monitored is shown in Figure 4.

Monitoring the memory address. Once OCTOPOCS specifies
the memory area where the bytes of poc are uploaded (called
the specified memory area), the next step is to trace this
memory area while executing S. When extracting the bytes
of poc used in `, it seems sufficient to consider the program
execution only after encountering ep. However, some bytes
in poc may be read and stored before entering ` and then
indirectly used in `. Thus, we decided to trace the specified
memory area from the entry point of S.

Context-aware taint analysis. Another major consideration
is that ep can be called multiple times. To address this issue,
OCTOPOCS uses context-aware taint analysis. This method
understands the context in which the software is executing. In
particular, OCTOPOCS uses taint analysis that recognizes (1)
the parameters of ep, (2) the number of times the program
execution encounters ep, and (3) the byte characters of poc
that are used each time it goes into `. The flow of monitoring
the specified memory area is given as follows:

P1.1 During the execution of S, OCTOPOCS checks whether
the specified memory area is referenced by any memory
read and write operations.

P1.2 Any memory addresses and registers affected by the
specified memory area are marked as new trace areas.
For all newly marked memory addresses while tracing,
we call them candidate addresses, indicating the parts
that can be indirectly used in `. OCTOPOCS repeats P1.1
and P1.2 until the program execution encounters ep.

P1.3 If an access to the specified memory area occurs after
ep is called (i.e., the program execution goes inside `),
all file bytes of poc that affected the accessed memory
address are marked as crash primitives. In addition,
even when an access to the candidate memory addresses
occurs, the file bytes of poc that affected the accessed
memory address are also marked as crash primitives.

Once OCTOPOCS performs P1.3, OCTOPOCS groups the
marked crash primitives (i.e., byte characters used in ` at the
same sequence) into a bunch; multiple bunches are generated
if the execution path of S enters ` more than one time when

Algorithm 1: Algorithm for extracting crash primitives.
Input: S, poc, ep
Output: q // Crash primitives of poc.

1 procedure EXTRACTINGCP
(
S, poc, ep

)
2 q ← Ø
3 Run(S, poc)
4 poc_mem ← MemoryHooking(S)

// Memory address set of poc bytes.
5 tainted ← poc_mem

// Tainted objects (e.g., memory addresses and registers).
6 while ¬ CRASH do
7 read_obj, write_obj ← GetCurrentAsm()
8 if read obj ∈ tainted then
9 tainted.add(write_obj)

10 else if write obj ∈ tainted then
11 tainted.del(write_obj)

12 if Enter(ep) then
13 epCount ← GetCountEp()

// Measures #times ep has been encountered.
14 value ← GetPoCValues(read_obj)

// Get the file byte values corresponding to read obj.
15 q[epCount].add(value)

16 return q

triggering v. Each bunch is stored along with the number
of encounters with ep (sequential value). For example, when
the execution flow of S encounters ep for the second time,
the bunch is saved with a value of 2. Later, OCTOPOCS
generates poc′ through a combined step that considers all of
these bunches.

Finally, when a crash occurs in S, the crash primitive
extraction phase ends and all bunches collected thus far (i.e.,
crash primitives) are passed to the next step. The high-level
algorithm of this phase is explained in Algorithm 1.

B. Generating guiding inputs phase (P2)

Phase overview. This phase starts with two inputs, T and
ep. The goal of P2 is to generate guiding inputs to lead
the execution flow of T from the entry point to ep. To this
end, OCTOPOCS decides to use symbolic execution. However,
when generating guiding inputs, finding values that lead exe-
cution flow to ep with naive symbolic execution often causes
a path explosion (especially when T has complex branches).
To avoid this issue, we use directed symbolic execution.
Specifically, OCTOPOCS first determines the correct path from
the entry point of T to ep, and then detects the constraints to
reach ep using the correct path information.

Backward path finding. OCTOPOCS first generates the
control-flow graph (CFG) of T to determine the correct
path from the entry point of T to ep. This generated CFG
provides information about the possible execution flows of
T . Because many branches exist in T , simply tracing the
program execution flows from the entry point of T to ep
results in considerable computational cost. Because we know

5



CRASH

𝒑𝒐𝒄 𝒑𝒐𝒄′

𝒆𝒑

𝒆𝒑

𝑺 𝑻

Fig. 5: Illustration for generating poc′.

the location of ep, OCTOPOCS detects the correct path (from
the entry of T to ep) by tracing backwards (from ep to the
entry of T ). This approach enables OCTOPOCS to reduce
considerably the number of paths to be tracked and the number
of computing resources.

Directed symbolic execution. OCTOPOCS now knows the
correct path from the entry point of T to ep. OCTOPOCS next
uses symbolic execution to extract constraints that satisfy the
correct path. Initially, the input file given to T is a file in
which all bytes are designated as symbols (this input symbol
file becomes poc′ after going through the process up to P3).

OCTOPOCS collects constraints in the following manner:
P2.1 Whenever a branch is encountered during executing T ,

OCTOPOCS points in the proper direction using the
correct path information determined during backward
path finding. Because the program execution does not
follow unnecessary paths, OCTOPOCS can avoid path
explosion and optimize poc′ to be generated.

P2.2 OCTOPOCS collects all the constraints obtained through
symbolic execution until the program execution of T
encounters ep. OCTOPOCS will solve all the constraints
at the combining phase (i.e., P3, see Section III-C).

We define four types of states that the execution flow of
T can encounter during symbolic execution as follows: (1)
active, (2) loop, (3) loop-dead, and (4) program-dead.

An active state is a normal state, and OCTOPOCS does not
have to do anything additional. However, OCTOPOCS must
carefully address the other three types of states when collecting
constraints. A loop state means that the state of symbolic
execution falls into a loop. In the loop state, determining the
correct number of iterations to exit the loop state and finally
reach ep is not easy. Thus, OCTOPOCS decides to handle the
state by increasing the number of iterations from one to θ
(i.e., the maximum number of iterations, see Section IV-B)
and repeating the loop state until the program execution does
not reach the loop-dead state. Here, a loop-dead state refers to
a state in which a concrete value that satisfies all the collected
constraints does not exist when exiting the loop using the
selected iteration.

Lastly, a program-dead state indicates that the program
execution falls into a dead state after exiting a loop with θ
iterations or before encountering any loop states. If the pro-
gram execution encounters a program-dead state, OCTOPOCS
determines that ` is not reachable, indicating that the vulner-
ability cannot be triggered in T . In contrast, if the program
execution flow successfully reaches ep, the constraints to reach
from the entry point of T to ep can be collected.

C. Combining phase (P3)

This phase starts with three inputs: q, r, and T . The goal
of P3 is to combine the obtained q and r to generate poc′.
It should be noted that P3 is not a completely separate phase
from P2; in fact, P3 proceeds whenever the execution flow
of T encounters ep in P2. Initially, an input file filled with
symbols was given as the input of T , and then constraints for
guiding inputs were collected in P2. In this phase, constraints
for crash primitives (described in P3.1) are applied to symbols
in the corresponding part of the input symbol file. Thereafter,
OCTOPOCS solves all the collected constraints and replace
the original symbols with concrete values. Finally, the input
symbol file with concrete values becomes poc′.

This task may seem easy at first glance, but it is error-prone
primarily for the following two reasons: (1) the size of guiding
inputs for T is often differ from that of S, and (2) ep may
be called multiple times in T . Because of the first reason,
placing q to poc′ using the same offset of q in poc results in
an error. In addition, q is a set of byte characters used after
the execution flow encounters ep; since ep can be encountered
multiple times during the execution of T , OCTOPOCS needs
to insert q in the proper position of poc′ for every context.

To address such issues, whenever the execution flow of
T encounters ep, OCTOPOCS checks the corresponding file
position indicator of the input symbol file and confirm the
proper position (i.e., offset) of q in poc′; note that OCTOPOCS
executes ep in T with the same parameters as those used in S.
Furthermore, OCTOPOCS extracts q into bunches according to
the sequence for encountering ep in P1. Therefore, whenever
the execution flow of T encounters ep, each corresponding
bunch is placed so that it can be used in the correct order.

6



The detailed flow of the combining phase is as follows:
P3.1 Whenever the execution flow of T encounters ep, the

corresponding bunch (according to the sequential num-
ber extracted in P1) is combined with r. In this process,
to avoid constraint conflict between q and r, file bytes of
q are expressed in constraint form. For example, when
OCTOPOCS places a bunch (0x41414141) in poc′ from
offset 5 to 8, the bunch is stored in the form of constraint
as “sym[5:9] == 0x41” (see Figure 5). The offset to
place q is determined by the file position indicator when
entering `. The file position indicator is a pointer to the
current byte to read in the file.

P3.2 If the execution flow of T enters ` multiple times,
OCTOPOCS repeats the previous step (P3.1) each time
when the execution flow enters `.

P3.3 After the final encounter of ep, OCTOPOCS terminates
the execution of T and solves the constraints gathered
thus far. When concrete values that satisfy all constraints
are determined, the symbolic values of the input symbol
file are replaced with these concrete values. The file
filled with these concrete values becomes poc′. If con-
crete values satisfying all constraints are not generated,
the vulnerability cannot be triggered in T .

Figure 5 describes the sample poc′ generation process.
In this example, ep is called twice in P1, and each time
0x41414141 and 0x4242424242 bunches are stored. Then,
in P2 and P3, OCTOPOCS obtains constraints for guiding
input and every time the execution flow of T encounters ep,
constraints for each bunches are added to the corresponding
symbols in the input symbol file. Finally, after solving all the
added constraints poc′ is generated. Algorithm 2 shows the
high-level workflow of P2 and P3.

D. Verifying the propagated vulnerability phase (P4)

Finally, if poc′ has been generated, OCTOPOCS verifies that
the propagated v is still triggerable in T using poc′. To do this,
OCTOPOCS executes T with the generated poc′, and checks
whether poc′ works on T (e.g., cause a crash).

Cases of successfully verifying vulnerability. Three possible
cases of successful verification exist:

(i) If OCTOPOCS causes a crash in T using poc′;
(ii) When ep is not called in T ;

(iii) When facing a program-dead state.
In particular, case (i) indicates that the propagated vulner-

ability can still be triggered in T . This vulnerability poses a
real threat; thus, immediate patching is required. Cases (ii)
and (iii) are the results of verification in which the propagated
vulnerable code cannot be called or triggered in T , indicating
that T is currently not threatened by the propagated vulnerable
code (even though it must be patched in the end).

Cases of failing to verify the vulnerability. OCTOPOCS may
not be able to generate poc′ for several reasons other than
the those described in cases (ii) and (iii). The main cause of

Algorithm 2: Algorithm for generating guiding inputs and
combining phases.

Input: T, ep, q
Output: new_poc // poc′

1 procedure GENERATINGGI
(
T, ep, q

)
2 next_direction ← initial_direction
3 epCount ← 0
4 path2ep ← FindPath(CFG of T)
5 constraint ← Ø
6 while CanExecute() do
7 branch = Execute(next_direction)
8 constraint.add(GetConstraint(next_direction))
9 if Enter(ep) then

10 pos = GetCurrentPosition()
11 LocatingCP(pos, q[epCount], constraint)

// Add constraints of q[epCount]
12 epCount += 1
13 if epCount == q.len() then
14 break

15 ExploreWhileEp()

16 next_direction = GetPath(branch, path2ep)

17 new_poc = Eval(constraint)
18 return new poc

failure is the loop state within T . OCTOPOCS runs the loop
state repeatedly up to θ until the execution flow escapes the
loop-dead state. However, repeating the loop beyond what our
directed symbolic execution can cover is necessary. Although
this case was not found in the current evaluation, it may occur
later. Thus, improving OCTOPOCS so that it can efficiently
handle loops is essential. We leave this as future work.

IV. IMPLEMENTATION OF OCTOPOCS

OCTOPOCS comprises two modules: (1) taint analysis en-
gine module (implemented in 2,400 lines of C++ code) and (2)
symbolic execution engine module (implemented in 500 lines
of Python code). We used Intel PIN [28] and angr [29] to
support each engine, respectively. Although the methodology
used in OCTOPOCS is not restricted to a particular language,
we implemented OCTOPOCS targeting C/C++ software; this is
because, source code reuse is prevalent in C/C++ software [6].

A. Taint analysis engine module

The taint analysis engine module is designed for extracting
crash primitives from the original PoC. We implemented this
module using the dynamic binary instrumentation (DBI) tech-
nique, a binary analysis technique that inserts the commands
we require. This allows us to designate the specific behavior
of the program when each of the instructions or functions are
executed. In particular, we use PIN [28], a DBI tool developed
by Intel, as it provides various APIs that enable to check
context information such as registers. PIN emulates the target
software program with our taint analysis engine module.

In addition, there are two types of file-read functions:
system call and library call. Because frequent use of system

7



calls makes the software program unable to utilize resources
efficiently, developers often make use of library calls. Hence,
OCTOPOCS considers both system call (e.g., NR read) and
library call (e.g., fread) when hooking a file read function.

Furthermore, software S processes poc at the byte character-
level. Therefore, we also handle the tainting at the byte
character-level. All byte characters in poc are checked if they
are tainted or not individually. Lastly, OCTOPOCS controls
both 64bit and 32bit registers when performing taint analysis.

B. Symbolic execution engine module

The symbolic execution engine module is designed to
generate guiding inputs and combines crash primitives and
the generated guiding inputs. We use angr [29] to support this
module, a powerful and widely used framework for symbolic
execution. Angr provides many APIs that can analyze software
with symbolic values, along with the solver engine that can
solve the constraints of symbolic variables. In addition, angr
provides a function to generate CFG, which is used to find
the correct path (see Section III-B). We use angr especially
when setting symbolic bytes in a file and executing a program
with the symbolic file. We further calculate the constraints of
symbolic bytes in the file using the solver engine of angr to
obtain concrete values of the bytes in the file.

In addition, we previously set θ, the maximum number of
iterations for existing a loop state when generating guiding
inputs (see Section III-B). When we evaluate OCTOPOCS, we
set θ as 120. This value was obtained from our experimental
results; in most cases, we confirmed that OCTOPOCS could
exit a loop state before conducting 120 iterations.

Lastly, two types of CFG exist: static and dynamic CFG. A
static CFG is generated only considering the call and jump
blocks (e.g., jmp). Although a static CFG can be quickly
generated with highly accurate block information, it cannot
contain the indirect call edge that appears only when a program
is running. In contrast, a dynamic CFG is generated with
symbolic execution; transition appears only in execution time.
Although the cost required to create a CFG is high, it is
possible to cover even functions that appear only during
program running, we determine to use the dynamic CFG
mainly; however, we have the option of using a static CFG.

V. EVALUATION

We next evaluated OCTOPOCS. The main objective was to
demonstrate how OCTOPOCS effectively verified a propagated
vulnerability. We introduce the collected dataset for evaluating
OCTOPOCS in Section V-A. In Section V-B, we investigate
the vulnerability verification results of OCTOPOCS. Section
V-C explains the effectiveness of the methodology used in
OCTOPOCS (i.e., context-aware taint analysis and directed
symbolic execution). Finally, we demonstrate the effectiveness
of OCTOPOCS by comparing OCTOPOCS with the existing
approaches, AFLFast [16] and AFLGo [17], in Section V-D.
We evaluated OCTOPOCS on a machine with Ubuntu 16.04,
Intel Core i7-7700 CPU @ 3.60GHz, and 32GB RAM.

A. Dataset collection

To collect the dataset, we first viewed the top 500 C/C++
software as ranked by the number of reported CVE vulnera-
bilities in the National Vulnerability Database (NVD). Among
them, software programs suitable for evaluation were chosen
based on the criteria that (1) they receive a file format as
input (as OCTOPOCS targets malformed file type PoCs) and
(2) the size of their binaries should be small enough to work
on angr [29] used for the implementation. There were only 17
software programs that satisfied the criteria, and we considered
them to be the original vulnerable software S. Next, we used
the methodology and dataset of VUDDY [6] (the scalable
vulnerable code clone detection technique) to detect T . We
searched for software that shares a vulnerability code with S
among the software dataset of VUDDY. Among the searched
software, we selected a software program as T when it satisfies
the two criteria mentioned previously. Note that we only
considered cases in which a PoC of the vulnerability was
publicly available on a website such as Bugzilla or GitHub.

Finally, 14 pairs of S and T were collected as the dataset.
In general, multiple binaries exist in a software project. We
consider only a binary that was directly related to a vulner-
ability by referring to vulnerability-related information such
as the NVD vulnerability description. In addition, we decided
to add one artificial test case as it can show some interesting
results. The collected binaries, ranging from 2,000 to 557,000
lines of code, were from diverse domains: namely, multimedia
(e.g., ffmpeg), PDF (e.g., pdfalto and ghostscript), and image
(e.g., gif2png and opj dump) related binaries. The number
of collected binaries is as many as that collected in related
approaches; e.g., AFLFast utilized less than 10 real-world
binaries, and AFLGo utilized less than 20 binaries.

B. Propagated vulnerability verification

Types of verification results. We first classifed the vulnera-
bility verification results of OCTOPOCS into four types:

• Type-I: Cases in which the guiding inputs of poc and poc′

were the same, and in which the propagated vulnerabili-
ties were triggered in T .

• Type-II: Cases in which the generated guiding input for
poc′ was different from that of poc, and in which the
propagated vulnerabilities were triggered in T .

• Type-III: Cases in which OCTOPOCS confirmed that
the vulnerabilities were not propagated to T (i.e., the
propagated vulnerability could not be exploitable).

• Failure: Cases in which OCTOPOCS failed to verify the
propagated vulnerable source code.

We also manually checked the results for Type-III cases
to determine whether they were correct (e.g., whether the
vulnerability is not triggerable).

Results. OCTOPOCS succeeded in verifying the propagated
vulnerabilities in 14 of the 15 datasets. Detailed verification
results for OCTOPOCS are listed in Table II.

8



TABLE II: Vulnerability verification results of OCTOPOCS. Idx means the index number of each result, S indicates the
original binary where the known-vulnerability originated, T represents the target binary that has a vulnerable clone of S, poc′

denotes whether OCTOPOCS generated poc′ for the vulnerability, and the verification column indicates whether OCTOPOCS
can verify the vulnerability in T .

Type Idx
S T Vulnerability

poc′ Verification
Name Version Name Version ID Type†

Type-I

1 JPEG-compressor N/A libgdx 1.9.10 CVE-2017-0700 No-CWE O O
2 JPEG-compressor N/A zxing @0a32109 CVE-2017-0700 No-CWE O O
3 pdftops (Poppler) 0.59 pdftops (Xpdf) 4.02 CVE-2017-18267 CWE-835 O O
4 avconv 12.3 ffmpeg 1.0 CVE-2018-11102 CWE-119 O O
5 tjbench (libjpeg-turbo) 2.0.1 tjbench (mozjpeg) @0xbbb7550 CVE-2018-20330 CWE-190 O O
6 pdfalto 0.2 pdfinfo (Xpdf) 4.0.0 CVE-2019-9878 CWE-119 O O

Type-II
7 ghostscript 9.26 opj dump 2.1.1 ghostscript-BZ697463 No-CWE O O
8 opj dump 2.1.1 MuPDF 1.9 ghostscript-BZ697463 No-CWE O O
9 gif2png 2.5.8 gif2png (artificial) N/A CVE-2011-2896 CWE-119 O O

Type-III

10 tiffsplit 4.0.6 opj compress 2.3.1 CVE-2016-10095 CWE-119 X O
11 tiffsplit 4.0.6 libsdl2 2.0.12 CVE-2016-10095 CWE-119 X O
12 tiffsplit 4.0.6 libgdiplus 6.0.5 CVE-2016-10095 CWE-119 X O
13 ghostscript 9.26 opj dump 2.2.0 ghostscript-BZ697463 No-CWE X O
14 pdfalto 0.2 pdftops (Xpdf) 4.1.1 CVE-2019-9878 CWE-119 X O

Failure 15 pdf2htmlEX 0.14.6 pdfinfo (Poppler) 0.41.0 CVE-2018-21009 CWE-190 X X
† CWE-119: buffer overflow, CWE-190: integer overflow, CWE-835: infinite loop

A total of six Type-I cases existed. In these cases, we found
that poc′ was often more optimized than poc because it did not
contain unnecessary bytes when a vulnerability was triggered.
For Type-I cases, poc itself could be used to verify the
propagated vulnerability. However, it proved significant that
OCTOPOCS effectively verified the propagated vulnerability
after generating poc′.

In addition, three Type-II cases were observed in the results.
Idx-7 and 8 as listed in Table II were those cases in which
OCTOPOCS could verify the propagated vulnerability using
the reformed PoC obtained by changing the header part of
the original JPEG file into PDF file format and vice versa (as
described in Section II-C). Idx-9 was an artificial test case.
The original gif2png binary (v2.5.8) contains the ReadImage
function, which includes the vulnerable code that can cause a
heap-based buffer overflow (CVE-2011-2896). The PoC of the
vulnerability was disclosed as a GIF file format, which should
contain version information (e.g., GIF87a) in its header sec-
tion. However, we found that invalid GIF version was recorded
in the disclosed PoC that we collected, and gif2png does not
care about invalid version information during the processing of
image data. Thus, we modified the version checking of gif2png
more strictly: if the GIF version information of the input
image file was invalid, the gif2png binary exited immediately.
Consequently, OCTOPOCS successfully generated a new PoC
that had valid GIF version information in the header section.
The generated PoC worked well on the modified gif2png.

Furthermore, we found five Type-III cases in which
OCTOPOCS failed to generate poc′ but confirmed that the vul-
nerability was not triggerable (i.e., the propagated vulnerable
code could not be exploitable). In the cases of Idx-10 to Idx-
12 as listed in Table II, the vulnerability was not triggered
for the same reason as described in Section II-C: although
the TIFFVGetField function (vulnerable function) was cloned

in T , OCTOPOCS confirmed that it was being reused in
an environment in which the tag value used in causing the
vulnerability could not be delivered. For the remaining cases
(Idx-13 and 14), the results of the testing were for whether
the vulnerability could be triggered in patched versions of T
that succeeded in triggering the vulnerability at Idx-7 and Idx-
6, respectively. As expected, we verified that the vulnerability
was not triggered after a patch code was inserted in T .

Finally, there was one case in which OCTOPOCS failed to
verify the propagated vulnerability, namely, Idx-15, as listed
in Table II. We determined that this failure was not due to
a problem with the OCTOPOCS methodology, Instead, it was
caused by angr as used in the implementation, where angr did
not correctly create the CFG of pdfinfo (due to a bug in its
codebase). We reported this bug to the angr team (April 2020)
and currently await a fix. If this bug is resolved, we expect
that the case can also be verified by OCTOPOCS.

Interestingly, three results were obtained in which the prop-
agated vulnerability was triggered in the latest version of T :
libgdx, tjbench in Mozilla mozjpeg, and pdftops in Xpdf (Idx-
1, 3, and 5). In 2018, a dangerous integer overflow vulnerabil-
ity was discovered in tjbench of libjpeg-turbo. Although the
libjpeg-turbo team immediately patched the vulnerability (Nov.
2018), we confirmed that the vulnerability still remained in
the latest version of Mozilla mozjpeg, which reuses code from
libjpeg-turbo (Jan. 2020). Similarly, the other two results were
cases in which the propagated vulnerability was not patched
to the latest version of each T . We reported these results
to the corresponding development teams with requests for
patches. The libgdx and Xpdf teams immediately patched the
vulnerability through our report; Xpdf team further assigned
the new CVE ID (CVE-2020-35376) for this vulnerability.
The Mozilla team responded that they would analyze the
vulnerability and patch it as soon as possible.

9



TABLE III: Effectiveness of context-aware taint analysis.

Idx S T
Taint

analysis†
Context-aware
taint analysis

1 JPEG-compressor libgdx O O
2 JPEG-compressor zxing O O
3 pdftops (Poppler) pdftops (Xpdf) X O
4 avconv ffmpeg X O
5 tjbench (libjpeg-turbo) tjbench (mozjpeg) O O
6 pdfalto pdfinfo (Xpdf) O O
7 opj dump ghostscript O O
8 opj dump MuPDF O O
9 gif2png gif2png (artificial) X O

†: taint analysis without context information.

C. Effectiveness of OCTOPOCS methodology

Effectiveness of context-aware taint analysis. We first eval-
uated the effectiveness of context-aware taint analysis used in
extracting crash primitives (see Section III-A). We confirmed
that the taint analysis technique without context information
failed to generate poc′ in three of nine datasets, whereas
context-aware taint analysis successfully generated poc′ for
all cases, as shown in Table III. This was because, when
we extracted crash primitives from a PoC without context
information, even when ep was called multiple times during
the execution of S, all the extracted crash primitives were
located in poc′ at once. Consequently, poc′ generated in this
manner was more likely not to work in T .

Effectiveness of directed symbolic execution. We then evalu-
ated the effectiveness of directed symbolic execution, which is
used to generate guiding inputs (see Section III-B). To see how
effectively guiding inputs are generated, we ran the experiment
with only Type-II with large variations in the guiding input.
Type-I and Type-III cases were excluded because Type-I cases
have little difference in guiding input between poc and poc′,
and OCTOPOCS coud not generate poc′ for the Type-III cases.

We measured the elapsed time and resources (i.e., memory)
consumed in reaching ep for each naive symbolic execution
(offered by angr) and directed symbolic execution. Note that
the directed symbolic execution proceeded with the correct
path information to the vulnerable point (ep), but the naive
symbolic execution proceeded with only an address of the
vulnerable location. The results are shown in Table IV. The
elapsed time and used memory differed depending on the
complexity of T . Nevertheless, we confirmed that two of
the three evaluation datasets with naive symbolic execution
could not induce the execution of T until reaching ep due to
memory errors (i.e., path explosion problem). Our experimen-
tal results showed that the directed symbolic execution used
by OCTOPOCS could successfully avoid the path explosion
problem and generate guiding inputs in a reasonable time.

D. Comparison with existing approaches

Several existing approaches exist. However, most target only
a specific type of vulnerability (e.g., authentication bypass)
or a specific environment (e.g., kernel-related vulnerability);
e.g., Driller [11] was excluded from comparison because it

TABLE IV: Effectiveness of directed symbolic execution.

S T
SE† D-SE‡

Time(s) RAM(MB) Time(s) RAM(MB)

ghostscript opj dump 3.49 461 2.87 413

opj dump MuPDF N/A ∗MemError 74.56 937

gif2png gif2png (arti.) N/A MemError 532.28 1,802
†: symbolic execution, ‡: directed symbolic execution, ∗: memory error.

TABLE V: Elapsed time for verifying the propagated vulner-
ability in T in AFLFast, AFLGo, and OCTOPOCS.

S T
AFLFast∗ AFLGo∗ OCTOPOCS

Elapsed time (s)

ghostscript opj dump N/A N/A 9.67
opj dump MuPDF N/A Error† 75.4
gif2png gif2png (arti.) 201 N/A 558.46

∗: running 20 h, †: cannot executed due to the tool error.

only targets DARPA Experimental Cyber Research Evaluation
Environment binaries. Thus, we selected AFLFast [16] (i.e.,
coverage-based fuzzer) and AFLGo [17] (i.e., directed fuzzer).
We used the three cases listed in Table IV and compared the ef-
fectiveness of OCTOPOCS with AFLFast and AFLGo in terms
of vulnerability verification. We ran AFLFast and AFLGo for
20 h in the same environment as that of OCTOPOCS.

The comparison results are shown in Table V. Notably,
OCTOPOCS required less than 15 min to verify the propagated
vulnerabilities in the selected three binaries.

Although AFLFast verified the propagated vulnerability of
gif2png in 201 s, for the other two cases, it could not verify
the propagated vulnerabilities even after running 20 h. Existing
fuzzers are greatly affected by the size of the testing binary.
This is why AFLFast showed higher efficiency in gif2png.
However, the other two binaries are large in size, thus AFLFast
failed to verify the propagated vulnerabilities. By contrast, the
efficiency of OCTOPOCS is more dependent on the size of the
outer space of `, because OCTOPOCS utilizes the concept of
crash primitives. Even if the size of the binary is large, if the
parts other than ` in binary are small, OCTOPOCS can verify
the vulnerability in a reasonable time.

Similarly, AFLGo could not verify the propagated vulnera-
bilities within 20 h. Even though AFLGo uses the vulnerability
location information, the input value to reach the vulner-
able location in AFLGo was randomly generated, whereas
OCTOPOCS uses the crash primitive extracted from the orig-
inal PoC. There is a clear difference in performance and
efficiency between using the known correct answers and gen-
erating the correct answer at random. Therefore, from the per-
spective of verifying the propagated vulnerability, OCTOPOCS
is more efficient than AFLGo. For MuPDF case, due to a tool
error, we could not test it with AFLGo. We reported this bug
and are currently in discussion with the AFLGo team.

In conclusion, we confirmed that OCTOPOCS showed better
performance than the existing fuzzers in terms of verifying the
propagated vulnerabilities.

10



VI. RELATED WORK

Vulnerable code clone detection. There are a number of
approaches attempted to detect vulnerable code clones [6]–
[8], [30], [31]. Their main concern is to detect vulnerable code
clones among software projects, and they are not interested in
determining whether the detected vulnerable code clones are
still triggerable after their propagation. Therefore, it is out of
the scope of these studies to verify the triggerability of the
propagated vulnerabilities, which we attempt to solve.

Exploit primitive identification. Several existing exploit
primitive identification approaches exist that finds an ex-
ploitable state in software [10]–[15].

Brumley et al. [10] attempted to identified exploit primitives
by finding differences between program P and its patched
version P′. To find deeper bugs, Stephens et al. [11] used
both fuzzing and selective concolic execution techniques to
complement the shortcomings of each of them and combined
only the advantages. However, their datasets are limited to
applications from CGC (as mentioned in Section V-D), making
the results questionable when applying their tool to real-world
software. Lu et al. [12] used deterministic stack spraying
method and exhaustive memory spraying technique to identify
exploit primitive about use-before-initialization vulnerabilities
in the Linux Kernel. Wu et al. [13] identified exploit primitives
of use-after-free vulnerabilities in kernel with their tool, FUZE.
Yun et al. [15] presented an automatic tool, ARCHEAP, to
find the unexplored heap exploitation primitives. ARCHEAP
works similar to fuzzing with common designs of allocators
to find heap exploitation primitives. In addition, Wu et al. [14]
proposed an exploit primitive evaluation framework, KEPLER,
that generates exploit with “single-shot” exploitation chain.
KEPLER gets a control-flow hijacking primitive as input and
only focuses on making an exploit from the exploit primitive.
However, this work focuses on the exploit primitive evaluation,
the step after the exploit primitive identification.

Therefore, all of these approaches are not suitable to effec-
tively perform verification for a specific propagated vulnera-
bility, which we consider and attempt to resolve in this paper,
without any restrictions in the type of vulnerabilities.

VII. DISCUSSION

Malformed file type PoC. OCTOPOCS only targets mal-
formed file type PoC. Although we have confirmed that they
account for a large portion of the reported PoCs that we
observed (70%, see Section II-A), other types of PoCs still
have to be considered. The concept proposed by OCTOPOCS,
using the reusable part of the original PoC (crash primitives)
and efficiently generating the part to be added to a new PoC
(guiding inputs) will be able to operate in other types of
PoCs. If this becomes an issue, we will study the method
for reforming other types of PoCs.

Practical usage. Assume that a developer has confirmed that
several pieces of propagated vulnerable code exist in their

software. At this point, they can use OCTOPOCS to determine
which vulnerabilities need to be patched more urgently (i.e.,
they can prioritize vulnerability patches). In addition, security
analysts who are interested in vulnerability analysis can also
use OCTOPOCS to increase the security of the OSS ecosystem.
For example, when they detect a propagated vulnerable code
in a software program, they can easily check whether the
vulnerability can still be triggered, and then recommend a
patch to the corresponding software security team.

Code-fragments level vulnerability propagation. If the
reused code area of S is minimal, e.g., only a few functions
were reused, the crash primitives are minimized, so the per-
formance of OCTOPOCS can be comparable to that of other
related approaches. However, this is an infrequent case, and
the propagation of vulnerabilities mostly takes place in units
of a set of numerous functions. The more functions were
propagated, the more crash primitives were extracted, which
can improve the performance of OCTOPOCS.

Limitations. In our experiment, we used 15 vulnerable soft-
ware pairs selected by clear criteria, but they may not be
representative to demonstrate the effectiveness of OCTOPOCS.
Furthermore, when OCTOPOCS attempts to exit a loop-state
in T , OCTOPOCS runs the loop state repeatedly up to θ until
the execution flow of T exits the loop-dead state. However,
certain vulnerabilities may be triggered only when iterating
a specific loop statement more than θ times; currently, the
method of OCTOPOCS cannot be used to verify these kinds
of vulnerabilities. Finally, we use angr when implementing
OCTOPOCS, which prevents vulnerability verification for bi-
naries where angr does not work.

VIII. CONCLUSION

As code-reuse becomes prevalent in software development,
addressing the propagation of vulnerability has emerged as
an important concern. In response, we presented OCTOPOCS
for verifying whether a vulnerability in propagated vulnerable
code can still be triggered by using the reformed PoC. The
context-aware taint analysis and directed symbolic execution
make OCTOPOCS to effectively reform PoC and verify propa-
gated vulnerabilities. Equipped with vulnerability verification
results from OCTOPOCS, we expect that developers can patch
more dangerous vulnerabilities faster; in the end, OCTOPOCS
can contribute to making a more secure software ecosystem.

ACKNOWLEDGMENT

We appreciate our shepherd and the anonymous reviewers
for their valuable comments to improve the quality of the
paper. We are also grateful to Seungmok Kim and Geonwoo
Lee for helping us analyze the experimental results manu-
ally. This work was supported by Institute of Information &
Communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT) (No.2019-
0-01697 Development of Automated Vulnerability Discovery
Technologies for Blockchain Platform Security and No.2021-
0-01819 ICT Creative Consilience program).

11



REFERENCES

[1] S. Koch, “Evolution of open source software systems–a large-scale
investigation,” in Proceedings of the 1st International Conference on
Open Source Systems, 2005, pp. 148–153.

[2] A. Deshpande and D. Riehle, “The total growth of open source,” in IFIP
International Conference on Open Source Systems, 2008, pp. 197–209.

[3] 2018 open source security and risk analysis (OSSRA), Synopsys,
2018. [Online]. Available: https://www.blackducksoftware.com/about/
news-events/releases/audits-show-open-source-risks

[4] The GitHub Blog - Thank you for 100 million repositories, GitHub,
2018. [Online]. Available: https://github.blog/2018-11-08-100m-repos/

[5] H. Li, H. Kwon, J. Kwon, and H. Lee, “Clorifi: software vulnerability
discovery using code clone verification,” Concurrency and Computation:
Practice and Experience, vol. 28, no. 6, pp. 1900–1917, 2016.

[6] S. Kim, S. Woo, H. Lee, and H. Oh, “VUDDY: A Scalable Approach
for Vulnerable Code Clone Discovery,” in Proceedings of the 38th IEEE
Symposium on Security and Privacy (SP), 2017, pp. 595–614.

[7] J. Jang, A. Agrawal, and D. Brumley, “ReDeBug: Finding Unpatched
Code Clones in Entire OS Distributions,” in Proceedings of the 33rd
IEEE Symposium on Security and Privacy (SP), 2012, pp. 48–62.

[8] Y. Xiao, B. Chen, C. Yu, Z. Xu, Z. Yuan, F. Li, B. Liu, Y. Liu, W. Huo,
W. Zou et al., “MVP: Detecting Vulnerabilities using Patch-Enhanced
Vulnerability Signatures,” in Proceedings of the 29th USENIX Security
Symposium, 2020, pp. 1165–1182.

[9] Y. Dong, W. Guo, Y. Chen, X. Xing, Y. Zhang, and G. Wang, “Towards
the detection of inconsistencies in public security vulnerability reports,”
in Proceedings of the 28th USENIX Security Symposium, 2019, pp. 869–
885.

[10] D. Brumley, P. Poosankam, D. Song, and J. Zheng, “Automatic patch-
based exploit generation is possible: Techniques and implications,” in
Proceedings of the 29th IEEE Symposium on Security and Privacy (SP),
2008, pp. 143–157.

[11] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
fuzzing through selective symbolic execution.” in Proceedings of the
Network and Distributed System Security Symposium (NDSS), 2016, pp.
1–16.

[12] K. Lu, M.-T. Walter, D. Pfaff, S. Nümberger, W. Lee, and M. Backes,
“Unleashing use-before-initialization vulnerabilities in the linux kernel
using targeted stack spraying.” in Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2017.

[13] W. Wu, Y. Chen, J. Xu, X. Xing, X. Gong, and W. Zou, “FUZE: Towards
facilitating exploit generation for kernel use-after-free vulnerabilities,”
in Proceedings of the 27th USENIX Security Symposium, 2018, pp. 781–
797.

[14] W. Wu, Y. Chen, X. Xing, and W. Zou, “KEPLER: Facilitating Control-
flow Hijacking Primitive Evaluation for Linux Kernel Vulnerabilities,” in
Proceedings of the 28th USENIX Security Symposium, 2019, pp. 1187–
1204.

[15] I. Yun, D. Kapil, and T. Kim, “Automatic techniques to systematically
discover new heap exploitation primitives,” in Proceedings of the 29th
USENIX Security Symposium, 2020.

[16] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based grey-
box fuzzing as markov chain,” IEEE Transactions on Software Engi-
neering, vol. 45, no. 5, pp. 489–506, 2017.

[17] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Directed
greybox fuzzing,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, 2017, pp. 2329–2344.

[18] D. Mu, A. Cuevas, L. Yang, H. Hu, X. Xing, B. Mao, and G. Wang,
“Understanding the reproducibility of crowd-reported security vulnera-
bilities,” in Proceedings of the 27th USENIX Security Symposium, 2018,
pp. 919–936.

[19] J. Newsome and D. X. Song, “Dynamic taint analysis for automatic
detection, analysis, and signaturegeneration of exploits on commodity
software.” in Proceedings of the Network and Distributed System Secu-
rity Symposium (NDSS), 2005, pp. 3–4.

[20] J. Clause, W. Li, and A. Orso, “Dytan: a generic dynamic taint analysis
framework,” in Proceedings of the 2007 International Symposium on
Software Testing and Analysis, 2007, pp. 196–206.

[21] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted
to know about dynamic taint analysis and forward symbolic execution
(but might have been afraid to ask),” in Proceedings of the 31st IEEE
Symposium on Security and Privacy (SP), 2010, pp. 317–331.

[22] J. C. King, “Symbolic execution and program testing,” Communications
of the ACM, vol. 19, no. 7, pp. 385–394, 1976.

[23] C. Cadar and K. Sen, “Symbolic execution for software testing: three
decades later,” Communications of the ACM, vol. 56, no. 2, pp. 82–90,
2013.

[24] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi,
“A survey of symbolic execution techniques,” ACM Computing Surveys
(CSUR), vol. 51, no. 3, pp. 1–39, 2018.

[25] Pallor, Ghostscript Null Pointer Dereference Vulnerability, 2017
(accessed October 28, 2020). [Online]. Available: https:
//ghostscript.com/pipermail/gs-bugs/2017-January/046853.html

[26] Backtraces, 2020 (accessed December 2, 2020). [Online]. Available:
https://www.gnu.org/software/libc/manual/html node/Backtraces.html

[27] Wikipedia, File descriptor, 2020 (accessed November 20, 2020.
[Online]. Available: https://en.wikipedia.org/wiki/File descriptor

[28] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized
program analysis tools with dynamic instrumentation,” in Proceedings of
the 2005 ACM SIGPLAN Conference on Programming Language Design
and Implementation, 2005, p. 190–200.

[29] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna,
“SoK: (State of) The Art of War: Offensive Techniques in Binary
Analysis,” in Proceedings of the 37th IEEE Symposium on Security and
Privacy (SP), 2016.

[30] Z. Li, D. Zou, S. Xu, H. Jin, H. Qi, and J. Hu, “VulPecker: an automated
vulnerability detection system based on code similarity analysis,” in
Proceedings of the 32nd Annual Conference on Computer Security
Applications (ACSAC), 2016, pp. 201–213.

[31] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong,
“Vuldeepecker: A deep learning-based system for vulnerability detec-
tion,” arXiv preprint arXiv:1801.01681, 2018.

12

https://www.blackducksoftware.com/about/news-events/releases/audits-show-open-source-risks
https://www.blackducksoftware.com/about/news-events/releases/audits-show-open-source-risks
https://github.blog/2018-11-08-100m-repos/
https://ghostscript.com/pipermail/gs-bugs/2017-January/046853.html
https://ghostscript.com/pipermail/gs-bugs/2017-January/046853.html
https://www.gnu.org/software/libc/manual/html_node/Backtraces.html
https://en.wikipedia.org/wiki/File_descriptor

	Introduction
	Approach of OctoPoCs
	Background
	Overview of OctoPoCs
	Motivating example

	Design of OctoPoCs
	Extracting crash primitive phase (P1)
	 Generating guiding inputs phase (P2)
	Combining phase (P3)
	Verifying the propagated vulnerability phase (P4)

	Implementation of OctoPoCs
	Taint analysis engine module
	Symbolic execution engine module

	Evaluation
	Dataset collection
	Propagated vulnerability verification
	Effectiveness of OctoPoCs methodology
	Comparison with existing approaches

	Related work
	Discussion
	Conclusion
	References

