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Abstract—The increasing use of smart home technologies has
raised concerns about security vulnerabilities, particularly in Z-
Wave systems. Existing approaches hold the promise of assessing
Z-Wave security in slave devices but fall short of being effectively
applied to discover vulnerabilities in Z-Wave controllers, which
are central to Z-Wave systems. We present ZCOVER, a frame-
work for systematically analyzing the application layer of Z-Wave
controllers to uncover security vulnerabilities. By extracting the
known and unknown properties of the Z-Wave controller and
utilizing mutation that considers the correlations of the Z-Wave
packet frame fields, ZCOVER can effectively discover unknown
vulnerabilities in the target Z-Wave controller. Evaluation on nine
real-world Z-Wave devices showed that ZCOVER outperformed
existing Z-Wave security research, by discovering 15 previously
unknown critical vulnerabilities with 12 new CVE IDs assigned.
ZCOVER can be utilized as a resource for ensuring the security
of Z-Wave controllers in building a secure Z-Wave smart home.

Index Terms—Internet of Things, Z-Wave, Smart home, Secu-
rity analysis, Fuzzing, Vulnerability discovery.

I. INTRODUCTION

The use of Z-Wave [1] smart home technologies has ushered
in a new era of convenience and connectivity [2], allowing
users to monitor and control various aspects of their living
spaces. However, this increased connectivity brings new se-
curity challenges, as smart home devices become targets for
malicious actors exploiting vulnerabilities [3].

While smart home device security (e.g., cameras and smart
locks) has been widely studied [4], the controller has often
been overlooked. As the central hub in Z-Wave systems, the
controller manages device communication between diverse
slave devices. Despite its critical role, its security remains
underexplored and potentially vulnerable. Despite its pivotal
role, the security of the Z-Wave controller has received limited
scrutiny, leaving it potentially vulnerable.

This gap in research highlights the need for a systematic
security analysis framework tailored specifically to the ap-
plication layer implementation of Z-Wave controllers, aiming
to uncover potential vulnerabilities and enhance the overall
security posture of Z-Wave smart home systems.

Several existing approaches have attempted to test the
security and privacy assurance of the Z-Wave protocol and
devices. Unfortunately, they (1) are not suitable for analyzing
the security of the Z-Wave controller (e.g., [5]), (2) do not
focus on examining the main controller’s application layer
security (e.g., [6]–[8]), and (3) fail to sufficiently consider the
proprietary properties of the controller (e.g., [9]), resulting in
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low efficiency in identifying vulnerabilities. For these reasons,
existing approaches are not effective at detecting unknown
vulnerabilities in the Z-Wave controller.

Challenges. We face several challenges in assessing the Z-
Wave controller to discover unknown vulnerabilities.

First, because of the closed nature of Z-Wave implementa-
tion, the lack of accessibility to devices’ source code hampers
our ability to perform a thorough code review and identify
potential vulnerabilities from the source. Therefore, we have
to assess the device based on black-box testing (e.g., fuzzing).
However, it is difficult to obtain detailed information on the
core properties (e.g., command classes) of controllers for
efficient mutation, because proprietary documentation is often
incomplete or limited, making it difficult to understand the
operation of the controller. Moreover, the mutation strategy
should consider the Z-Wave application layer implementation
within the controller, necessitating precise and sophisticated
techniques to generate meaningful test cases.

Our approach. To overcome these challenges, we pro-
pose a new approach called ZCOVER (Z-Wave COntroller
Vulnerability discovERy), a security analysis framework that
helps find systematic information on a target Z-Wave con-
troller to discover previously unknown vulnerabilities.

The main ideas of ZCOVER, which are significantly dif-
ferent from existing approaches, are (1) comprehensively
extracting both the known and unknown properties (e.g.,
command classes) of the Z-Wave controller and (2) performing
fuzzing using position-sensitive mutation by considering the
correlation of Z-Wave packet fields.

By identifying both the known (listed) and unknown (un-
listed) properties of the target controller, ZCOVER can assess
the target controller more effectively. By performing mutations
based on the controller’s properties and considering the corre-
lation between Z-Wave packet fields, ZCOVER increases the
possibility of detecting potential vulnerabilities from the target
controller.

Previous approaches did not consider unknown or propri-
etary command classes (CMDCLs) for efficient fuzzing of the
Z-Wave controller, nor did they effectively consider the corre-
lation of the Z-Wave application layer frame fields. However,
we addressed these issues by fingerprinting a target controller
for known CMDCLs and conducting a mutation strategy based
on the discovered CMDCLs definition.

Specifically, ZCOVER comprises the following three phases:
(1) known properties fingerprinting (Section III-B), (2) un-
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known properties discovery (Section III-C), and (3) position-
sensitive mutation (Section III-D).

Efficient fuzzing requires understanding the controller’s
properties. ZCOVER achieves this by combining new passive
and active scannings to extract known and unknown properties.
Through passive scanning, ZCOVER captures properties such
as home ID and CMDCLs by intercepting packet exchanges in
a normal Z-Wave network. Active scanning further identifies
these properties using the Z-Wave node information frame
(NIF) requests. To uncover hidden CMDCLs, ZCOVER lever-
ages the Z-Wave specification and validation tests to identify
unlisted but supported properties.

Using the identified properties, ZCOVER generates test
packets that are rarely rejected and effectively reveal vulnera-
bilities. Its position-sensitive mutation, which considers packet
field correlations based on CMDCL, improves the fuzzing
efficiency compared to simple mutation approaches.

When we applied ZCOVER to nine real-world Z-Wave
devices, it identified 15 critical zero-day vulnerabilities, from
which 12 were assigned new CVE IDs (see Section IV-A).
All detected vulnerabilities were reported to the respective
vendors and were all confirmed. Furthermore, our experiments
comparing ZCOVER with a recent Z-Wave vulnerability dis-
covery approach (i.e., VFUZZ [9]) demonstrated that ZCOVER
is faster and more effective at identifying unknown vulnerabil-
ities in Z-Wave controllers. Unlike VFUZZ, which focuses on
slave devices, ZCOVER looks at the correctness of controller
implementations’ handling of application layer payload. (see
Section IV-C).

Contributions. We summarize our contributions below.
• We propose ZCOVER, a new approach for discovering

potential security issues in a Z-Wave controller. The key
technical contributions are a methodology for identifying
known and unknown properties of the Z-Wave controller
and a mutation technique that considers the correlation
of Z-Wave packet fields.

• We have demonstrated that vulnerabilities can be ex-
ploited in Z-Wave controllers known to use encryption
for security (i.e., Security 2 encapsulation). ZCOVER can
address these concerns in advance, and we suggest attack
remediation measures for prevention.

• ZCOVER discovered 15 zero-day vulnerabilities (with
12 new CVE IDs assigned) in nine real-world Z-Wave
devices. All vulnerabilities were confirmed by the cor-
responding vendors, and our findings will be reflected
in the upcoming 2024 Z-Wave specification release. We
provide sample videos in [10], [11] showcasing found
vulnerabilities impact on real Z-Wave devices.

II. BACKGROUND, THREAT MODEL AND CHALLENGES

In this section, we first present the background knowledge
of the Z-Wave protocol, including its architectural components
and security mechanisms. We then outline the threat model
relevant to IoT systems in smart homes, along with the
challenges to address Z-Wave threats.

H-ID CSSRC P1 P2 LEN DST Application Payload

APL

MAC

CMDCL CMD PARAM1 …PARAM2 PARAMn

4B             1B              1B         1B           1B                1B                          n Byte (B)              1B

1B                              1B                          1B                         1B                 n Byte (B) 1B

Fig. 1: Z-Wave basic frame structure details.

A. Z-Wave protocol overview

Z-Wave is a wireless communication protocol designed for
home automation and smart home applications. It is a low
bandwidth, low-power mesh protocol that operates in the sub-
gigahertz frequency range (800 - 900 MHz) and does not
interfere with other household electronics using Bluetooth, Wi-
Fi, and ZigBee in the 2.4 GHz range. Z-Wave devices typically
include sensors, actuators, and controllers, all interconnected
within a mesh network topology. Each device from different
vendors is equipped with a Z-Wave chipset (e.g., 100 to
800 series) to ensure interoperability. In addition, the Z-Wave
application layer (APL) defines various command classes
and profiles that facilitate communication and interoperability
between controllers and slave devices, allowing users to create
customized smart home setups tailored to their specific needs
[12], [13].

Figure 1 summarizes the structure of a Z-Wave frame. The
maximum MAC frame size is 64 bytes. We briefly introduce
the function of each packet field [9], [14], [15].

1) H-ID: Home ID value of a Z-Wave network.
2) SRC: The sender ID.
3) Frame control (P1 & P2): Specify the packet type

(P1) and routing information (P2).
4) LEN: Packet length.
5) DST: The receiver ID.
6) CMDCL: Command class related to certain functionality

of a device.
7) CMD: Command to be executed by the receiver device.
8) PARAM: Command payload values (e.g., lock or unlock

a smart door lock device).
9) CS: Checksum of a Z-Wave packet.
1) Encapsulation of Z-Wave data transmission: Z-Wave

data is exchanged between controllers and devices using three
transport modes [9], [12]:

• No Security. Data is sent without encryption, relying on
basic checksums (CS-8/CRC-16). Legacy devices are vul-
nerable to injection attacks due to inadequate protection
mechanisms.

• Security 0 (S0). Uses AES-128 encryption but is sus-
ceptible to MITM attacks due to a fixed temporary key
during key exchange [7].

• Security 2 (S2). Employs ECDH for secure key deriva-
tion and AES-128-CMAC for integrity. Despite its en-
hancements, Z-Wave protocol still has flaws in its speci-
fication and implementation (see Section IV-A).
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(1) Scan all Z-Wave network traffic

(4) Delete Lock in Controller’s memory
(Homeowner cannot control the Smart lock)
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(2) Report status

(3) Traffic sniffed

(5) Command:Lock

(6) Command:Lock
Command fail!

ControllerSmart Lock Cloud

Fig. 2: The attacker, positioned approximately 70 meters away,
uses a dongle connected to a device to scan, craft, and inject
DoS traffic, compromising the controller’s memory.

2) Z-Wave controller: The Z-Wave controller, also known
as hub, serves as a gateway between Z-Wave wireless traffic
and IP Internet traffic, facilitating communication with the
cloud server (see Figure 2). The controller is also responsible
for event reporting and automation activation. Any attack on
the controller would render the entire smart home system
non-functional, making the user unable to control devices
through mobile apps or web service interfaces (see Section
IV-A). In this paper, ZCOVER looks at the correctness of
controller implementations’ handling of Z-Wave application
layer payload.

B. Threat model

The primary threat actors in the Z-Wave smart home
systems include malicious insiders, external attackers, and
unintentional threats such as device misconfigurations.

• Malicious insiders may seek to exploit their privileged
access to the Z-Wave controller to compromise the in-
tegrity or confidentiality of the system.

• External attackers attempt to exploit vulnerabilities in
the Z-Wave protocol or controller implementation to gain
unauthorized access to sensitive information in memory
or disrupt normal system operation.

• Unintentional threats, such as device malfunctions or
misconfigurations, can also pose risks to the security and
reliability of Z-Wave home systems, potentially leading
to unintended consequences or system failures.

1) Attack scenario: Figure 2 illustrates a potential attack
scenario within Z-Wave home automation systems. In this
scenario, both the controller and the smart door lock support
and utilize the latest S2 encrypted communication transport.
An external attacker, positioned outside the house within
a range of 10 to 70 meters, employs a hardware dongle
connected to a laptop to scan and record all traffic from the
Z-Wave controller and slave devices [7], [9], [16]. While S2
communication encrypts only the Z-Wave packet application
layer, the attacker can still sniff remaining packet fields such
as home ID, source, and destination details.

An attacker with knowledge of the Z-Wave network can
exploit application layer proprietary CMDCLs and CMDs to
create malicious unencrypted payloads that alter or delete the

controller’s internal memory information for controlling the
smart door lock. These unencrypted malicious payloads can
be wirelessly injected into the controller, causing it to erase
the S2 door lock data. As a result, the homeowner will be
unable to lock the smart door remotely or locally using their
smartphone app, as the controller will no longer recognize the
lock. Furthermore, memory tampering attacks on the controller
hinder the homeowner from controlling any device in the
network (see Section IV-A). These attacks occur without the
homeowner’s knowledge. To prevent such intrusions, security
testing of the central controller in Z-Wave smart homes is
essential.

C. Challenges for enhancing Z-Wave security

Improving Z-Wave security faces significant obstacles due
to the proprietary and closed nature of Z-Wave implementa-
tions, making source code inaccessible. This hampers in-depth
code reviews, leaving fuzzing as an effective alternative for
discovering vulnerabilities (e.g., [5], [9], [17]). However, two
key challenges complicate fuzzing efforts.
Diversity in implementations. Z-Wave controllers only im-
plement specific CMDCLs relevant to their functionality, not
all specified CMDCLs. Fuzzing without targeting these used
CMDCLs leads to most test packets being rejected, reducing
efficiency. Identifying implemented CMDCLs in firmware is
difficult due to restricted proprietary source code, which limits
access to critical details for testing [6].
Designing effective mutations. The hierarchical structure of
Z-Wave packets (CMDCL, CMD, and PARAM) varies by device
type. Crafting semi-valid and invalid payloads requires a deep
understanding of the protocol to uncover vulnerabilities. These
payloads must be sophisticated enough to test exception and
error conditions without being rejected by the controller’s
basic checks. Overcoming these challenges is crucial for
uncovering new security flaws.

III. METHODOLOGY

In this section, we describe the design of ZCOVER, a com-
prehensive security analysis framework for Z-Wave controllers
tailored to the application layer implementation.

A. Overview

ZCOVER basically performs fuzzing [18] on the target Z-
Wave controller. During this process, it extracts and leverages
useful properties of the controller and employs an efficient
packet mutation algorithm. The key features of ZCOVER lie
in (1) leveraging proprietary hidden properties (i.e., hidden
CMDCLs of the controller) along with the known listed prop-
erties of the controller and (2) performing packet mutations by
considering the position of Z-Wave packet fields. With each of
these new features, we can overcome the challenges introduced
in Section II-C.

Figure 3 shows the high-level workflow of ZCOVER.
ZCOVER employs three distinct approaches to uncover poten-
tial vulnerabilities: known properties fingerprinting, unknown
properties discovery, and position-sensitive mutation.
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Fig. 3: High-level overview of ZCOVER.

1) Known properties fingerprinting. Initially, the passive
scanner of ZCOVER sniffs Z-Wave traffic from a target
controller to gather network information such as home
ID and device node ID. Next, the active scanner conducts
device reconnaissance to retrieve other known properties
such as listed supported CMDCLs.

2) Unknown properties discovery. Upon obtaining the
known properties, ZCOVER provides them to the un-
known CMDCL extractor to uncover additional hidden or
unlisted CMDCLs that the controller should implement
according to its classification.

3) Position-sensitive mutation. The extracted properties,
both known and unknown, are then sent to the mutator
module, which mutates application payloads, consider-
ing CMDCL sub-categories command, parameter-position
semantics, and syntax of the Z-Wave packets. ZCOVER
conducts this process for each test case.

Design assumption. The goal of ZCOVER is to identify
unknown vulnerabilities within the Z-Wave controller’s ap-
plication layer. We designed ZCOVER to run as an external,
independent entity of the smart home due to the closed-
source nature of the Z-Wave controller chipset, which does
not allow the generation of mutated Z-Wave packets [5]. To
demonstrate the practicality of ZCOVER, it does not have
privileged access to the network and operates externally using
specialized hardware to sniff, analyze, craft, and inject Z-Wave
packets into the network.

B. Known properties fingerprinting
ZCOVER first identifies the controller’s known properties

using two techniques, namely passive and active scanning,
which examine communications between the Z-Wave con-
troller and known devices. ZCOVER targets three key prop-
erties: home ID, node ID, and listed (i.e., known) supported
CMDCLs, used by the Z-Wave controller to validate a message
trustworthiness. Recognizing these is crucial, as ignoring them
results in test packet rejection.

1) Passive scanner: First, ZCOVER identifies the home ID
and node ID through passive scanning. ZCOVER starts in
scanning mode to search for available Z-Wave networks. As
soon as communication occurs between a slave device and
the controller, ZCOVER captures the packet and retrieves the
network home ID and the device node ID associated with
the packet exchange. Figure 4 shows passive scanning of
ZCOVER, which encompasses the following three steps.

HomeID NodeID

Packet Capturing

Packet Dissection

Packet Analysis

Controller’s HomeID and NodeID

Raw data:110010111001010 …   0000100000010101

Hex data:0xCB95A34A ... 0x0F 0x20 0x01 0x00 0x2A

Network info:0xCB95A34A 0x0F

Target Z-Wave Controller

Z-Wave wireless traffic

Fig. 4: Diagram of the passive scanning of ZCOVER.

1) Packet capturing. ZCOVER verifies that the Z-Wave
transceiver dongle is configured with a valid radio fre-
quency (RF) and sampling rate (e.g., 868 or 908 MHz).
ZCOVER then scans any Z-Wave wireless traffic, filters
out the noise by removing specific repetitive bytes in the
signal, and retrieves the raw binary data.

2) Packet dissection. ZCOVER converts the raw Z-Wave
packet data into hexadecimal values for better represen-
tation and understanding.

3) Packet analysis. ZCOVER analyzes individual packet
bytes to extract the Z-Wave network home ID and device
node ID of the sender and receiver.

Even if the target controller utilizes S2 communication, the
home and node IDs can be retrieved because S2 encrypts
only the APL layer payloads. Therefore, ZCOVER identifies
the position within the Z-Wave packet frame to obtain the
network details (e.g., bytes index zero to three for home
ID; see Figure 1). After identifying the home and node IDs,
ZCOVER passes them to the active scanner.

2) Active scanner: Based on the properties collected in the
previous steps, ZCOVER requests additional details, i.e., listed
supported CMDCLs, from the target controller. Here, ZCOVER
leverages a node information frame (NIF) request; when we
request the controller via a NIF packet, the controller responds
with its listed supported CMDCLs (e.g., controller D4 listed
only 17 CMDCLs; see Table IV). ZCOVER carefully verifies
the CMDCLs of transmitted packets, because this reveals the
controller’s capabilities and functionalities.

Active scanning comprises the following three steps.
1) Dynamic device interrogation. ZCOVER initiates active

communication with the controller on the network, send-
ing targeted interrogation packets (i.e., device state) to
request responses.

2) Listed property querying. ZCOVER systematically
queries the target controller for its supported known
properties or CMDCLs (i.e., via NIF packets).

3) Response analysis. Upon receiving device responses
from the NIF request, ZCOVER analyzes the data to
extract relevant information, including listed supported
CMDCL to build an initial profile of the target controller.

The known properties, i.e., home ID, node ID, and listed
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Fig. 5: Visualization of selected Z-Wave command classes
(i.e., we listed 15 CMDCLs for better visualization) and their
corresponding commands distribution.

supported CMDCLs, identified in this section are used for
effective fuzzing in the final phase (see Section IV-B1).

C. Unknown properties discovery

Next, ZCOVER identifies proprietary (i.e., hidden) CMDCLs
of the target Z-Wave controller, which are often undocumented
and known only to manufacturers under a non-disclosure
agreement (NDA). If poorly implemented, these unlisted
CMDCLs can be exploited by attackers.

To detect and utilize these hidden CMDCLs for fuzzing,
ZCOVER (1) leverages the Z-Wave specifications and (2) per-
forms a systematic validation testing. In particular, ZCOVER
leverages the Z-Wave specification to identify unlisted
CMDCLs related to the controller. Next, ZCOVER employs a
systematic validation testing to verify whether the detected
CMDCLs are functional and supported by the target controller.

1) Leveraging public Z-Wave specification: The Z-Wave
Alliance maintains the Z-Wave specification [19], which, as of
November 2024, lists 122 CMDCLs. It details CMDCLs struc-
tures, CMD types, command flows, and supported functionali-
ties. Understanding this specification is crucial for identifying
deviations and potential unlisted proprietary properties related
to the controller.

Each CMDCL has multiple CMDs listed, along with an ID
in hexadecimal format and whether the CMD is controlling
(sent by a controller) or supporting (sent by a slave device in
response). The CMDs can be categorized into different types,
e.g., Get to retrieve information from a device and Set to
configure or control a device.

Locating missing CMDCLs. Identifying missing CMDCLs
requires understanding that supported CMDCLs vary by Z-
Wave device type. To analyze this, ZCOVER references the Z-
Wave specification and an XML file listing Z-Wave application
layer CMDCL definitions [20]. Using an automated script,
ZCOVER parses these sources and clusters CMDCLs that a
controller should support.

A Z-Wave controller is expected to support CMDCLs related
to application functionality, transport encapsulation, manage-
ment, and networking. For instance, CMDCLs such as Trans-
port, Security 0, and Security 2 are inherently associated

with the controller. By clustering CMDCLs based on func-
tion, fuzzing efforts can focus on specific controller-managed
functionalities, ensuring targeted testing in critical areas where
vulnerabilities are most likely.

The clustered CMDCLs serve as a baseline to detect
CMDCLs that should be implemented but were not revealed
during fingerprinting. This method helps pinpoint proprietary
CMDCL candidates. Using this, ZCOVER extracts all unlisted
CMDCLs along with their associated Commands (CMDs) and
Parameters (PARAMs) that a target controller should support.
Among 122 CMDCLs listed in the specification, ZCOVER
inferred 26 unlisted CMDCLs relevant to the controller. These
26 CMDCLs were absent during the known properties fin-
gerprinting stage, where ZCOVER initially identified only 17
CMDCLs (see Section III-B).

All clustered CMDCLs are treated as valid when generating
test packets for fuzzing. This approach enables ZCOVER to
uncover additional hidden CMDCLs beyond those explicitly
listed as supported, thereby improving the efficiency of vul-
nerability discovery.
Prioritizing CMDCLs. Upon examining the specification, first,
we can set the priority of unlisted CMDCLs during fuzzing.
CMDCL supports multiple CMDs, and the number of CMDs sup-
ported by each CMDCL varies (see Figure 5). Here, ZCOVER
gives higher priority to discovered unlisted CMDCLs that
support more CMDs when mutating test packets during fuzzing;
this follows our intuition that the more functionalities included,
the higher the likelihood of potential implementation bugs.

2) Systematic validation testing: To verify the controller’s
support for the discovered unknown or unlisted CMDCLs,
ZCOVER performs systematic validation testing. This process
follows a sequential approach, evaluating CMDCLs from 0x00
to the upper limit of the identified CMDCL list. Through
this method, ZCOVER uncovered two additional proprietary
CMDCLs (0x01 and 0x02) that were absent from the official
Z-Wave specification [19].

Notably, CMDCL 0x01, a Z-Wave network management
property, was not explicitly listed by developers, likely due to
incomplete implementation. This omission introduces critical
security risks, as evidenced by our findings in Table III, where
seven crucial vulnerabilities were associated with CMDCL
0x01. The lack of implementation robustness in this command
class further underscores the necessity of ZCOVER systematic
approach in uncovering hidden security flaws within Z-Wave
controllers. The process of validating unknown CMDCLs is as
follows.
Creating test cases. First, ZCOVER creates test cases that
systematically send packets for each element of the discovered
unknown CMDCL list starting from CMDCL 0x00. Thereafter,
ZCOVER sends these test cases to the target controller to
observe its response.

Monitoring responses. ZCOVER records the controller’s re-
sponses to each test case, focusing on those indicating success-
ful processing of unknown (i.e., unlisted) CMDCL not identified
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during initial fingerprinting. CMDCLs not matching the initial
report are flagged as valid proprietary candidates.

This task is effective in assessing the validity of the dis-
covered hidden CMDCLs on the target controller. For instance,
in our testbed, upon requesting the target controller D4 for
its supported CMDCLs via a NIF frame request (i.e., known
properties fingerprinting), only 17 CMDCLs were listed by the
controller (see Table IV). However, with above methods, we
found an additional 28 unlisted CMDCLs candidates related to
the controller to analyze.

By employing the aforementioned two techniques (i.e.,
leveraging public specifications and systematic validation test-
ing), we can uncover hidden CMDCLs for Z-Wave controllers.
Thus, enhancing the understanding of the controller’s full
range of functionalities and potential CMDCLs to consider for
vulnerabilities discovery during fuzz testing.

D. Position-sensitive mutation

Using the known and unknown properties, ZCOVER per-
forms fuzzing on the target controller. Here, ZCOVER utilizes
position-sensitive mutation for effective fuzzing.

The hierarchical structure of the Z-Wave application layer
can be visualized as a tree data structure (see Figure 6).
The top-level field at position 0 represents the CMDCL, which
defines a group of related commands corresponding to specific
functionality (e.g., door lock, switch binary, status). At the
next level, at position 1, resides the CMD, which specifies a
particular action or query within the command class (e.g.,
Set, Get, Report). Dependent fields (position 2) and beyond
are PARAMs, which provide the detailed data required by the
command to perform its function, such as operational settings.
This structured approach ensures that Z-Wave messages are
organized in a clear, modular fashion, facilitating precise com-
munication and control between controller and slave devices.

Mutating the application layer of Z-Wave messages should
carefully consider the position of fields to maintain the struc-
tural integrity and validity of the communication protocol;
incorrectly positioned mutations can lead to invalid frames
that devices may reject or ignore, thereby reducing the effec-
tiveness of the fuzzing process.

To address this issue and achieve effective fuzzing, ZCOVER
utilizes position-sensitive mutation.

1) Mutation strategies: The key idea of position-sensitive
mutation is to effectively mutate the test packet by considering

TABLE I: Mutation operators assigned to Z-Wave application
layer fields.

Field Len Mutation operators*

H-ID 4 None
SRC 1 None
P1 1 None
P2 1 None
LEN 1 None
DST 1 None
CMDCL 1 rand valid
CMD 1 rand valid, rand invalid, arith, interesting, insert

PARAM1 1 rand valid, rand invalid, arith, interesting, insert
PARAM2 1 rand valid, rand invalid, arith, interesting, insert

...
PARAMm 1 rand valid, rand invalid, arith, interesting, insert

CS 1 None

*rand valid: Replace with a randomly selected legal value.
*rand invalid: Replace with a randomly selected illegal value.
*arith: Add/subtract small integer.
*interesting: Replace with interesting values.
*insert: Append a random byte.

the position of each packet field. ZCOVER previously identi-
fied the known and unknown CMDCLs of the controller. A Z-
Wave packet has corresponding CMDs and PARAMs according
to CMDCLs. ZCOVER focuses on such a correlation, creating
packets that have a low probability of being rejected by the
target controller and are effective in finding vulnerabilities.
Specific strategies are as follows.

Mutation field selection. For more efficient mutations,
ZCOVER focuses on the application layer (e.g., CMDCL, CMD,
and PARAMs) of Z-Wave. Note that the maximum size of
the Z-Wave MAC layer is 64 bytes (see Section II-A). Thus,
randomly mutating all bits in a 64-byte Z-Wave MAC packet
would involve the permutation of 512 bits (i.e., 2512), which is
an extremely large number to achieve, taking over 4.25×10146

years while sending one packet per second.
Additionally, mutations on all Z-Wave packet fields are

less effective for the purpose of vulnerability detection. For
example, even if we change the values of home ID, checksum,
and length, this only impairs the validity of the packet and does
not help in identifying hidden vulnerabilities.

ZCOVER addresses this by reducing the input space to
the application layer and prioritizing controller-implemented
CMDCLs, significantly enhancing efficiency over random MAC
layer mutation. Moreover, ZCOVER focuses on the applica-
tion layer to ensure comprehensive testing of the controller’s
functionalities, reducing the chances of missing potential vul-
nerabilities in overlooked packet fields. This can increase the
function (i.e., CMDCL) coverage and be efficient in finding new
bugs (see Section IV). The previously discovered known and
unknown CMDCLs of the Z-Wave controller and their priorities
are considered here.

Dynamic and semantic mutation. Instead of applying ran-
dom mutations blindly, ZCOVER applies mutations that are
contextually relevant and meaningful for each parameter:
considering the type and semantic meaning of CMDCLs, the
corresponding CMDs and PARAMs are dynamically mutated
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Algorithm 1: ZCOVER Position-Sensitive Mutator
Input : C List: controller’s supported CMDCLs (e.g., 45)

C T: CMDCL mutation time
Testing T: fuzzing duration (e.g., 0.1 to 24 hours)
Controller: target Z-Wave controller

Output : Bug Logs: List of bug-inducing packets

1 Initialize Queue with C List (e.g., test 45 CMDCLs out of 256 )
2 Set Start Time ← Current Time
3 Initialize Bug Logs as an empty list
4 while Current Time - Start Time < Testing T and Queue is not

empty do
5 Dequeue the next CMDCL from Queue (e.g., 0x01)
6 Set CMD ← 0x00, PARAM ← 0x00
7 for each mutation within C T do
8 Generate a semi-valid Packet using CMDCL, CMD, and

PARAM (e.g., Initial pld: [0x01 0x00 0x00])
9 Send Packet to Controller and observe response

10 if Controller hangs or crashes then
11 Log Packet into Bug Logs
12 else
13 Mutate CMD and PARAM (e.g., 0x0D 0xAA)

14 if no crash occurs for the current CMDCL after C T then
15 Move to the next CMDCL in the queue (e.g., 0x7A)

16 Save Bug Logs to file for future analysis
17 return Bug Logs

to create a semi-valid packet that the target controller does
not reject. For example, if a parameter represents a controller
configuration setting, ZCOVER mutates it within a reasonable
range of values to test how the controller responds.

Boundary testing. ZCOVER focuses on mutating parameters
near their boundaries and edge cases to uncover potential
off-by-one errors, boundary checks, and overflow/underflow
conditions. This includes testing minimum and maximum
values, as well as values close to these limits.

2) Packet mutation and fuzzing: A Z-Wave controller im-
plements only certain application payload CMDCLs according
to its type and properties as revealed during the device known
properties fingerprinting (see Section III-B) and unknown
properties discovery phases (see Section III-C).

The position-sensitive mutator (PSM) algorithm is a fuzzing
method designed to identify vulnerabilities in Z-Wave con-
trollers. It prioritizes both listed and unlisted CMDCLs, gener-
ating semi-valid packets by modifying dependent commands
and parameters. Each packet is sent to the controller, with
crashes or bugs logged for further analysis. If no vulnerabilities
are found within a specific time for a CMDCL, PSM moves to
the next CMDCL in the queue. This approach ensures efficient
testing of a controller’s critical functionalities while mini-
mizing wasted effort on unsupported CMDCLs. Algorithm 1
shows the overall PSM process and Table I lists the fields
of a Z-Wave packet that ZCOVER mutates coupled with their
mutation operators.

Here, dynamic and semantic mutation involve modifying Z-
Wave packet values to align with protocol specifications while
deviating from typical inputs, exposing potential vulnerabili-
ties. For example, a BINARY Z-Wave packet [0x20, 0x01,
0xFF] (where 0x20 is CMDCL, 0x01 is SET CMD, and 0xFF

TABLE II: Tested device details information.

IDX Brand name Device type Model (year) Encryption
support*

D1 ZooZ Controller ZST10 (2022) Yes
D2 SiLab Controller UZB-7(2019) Yes
D3 Nortek Controller HUSBZB-1 (2015) Yes
D4 Aeotec Controller ZW090-A (2015) Yes
D5 ZWaveMe Controller ZMEUUZB1 (2015) Yes
D6 Samsung Controller ET-WV520 (2017) Yes
D7 Samsung Controller STH-ETH-200 (2015) Yes
D8 Schlage † Door Lock BE469ZP (2019) Yes
D9 GE Jasco † Smart Switch ZW4201 (2016) No

*Encryption support: whether or not the device supports data encryption. †
Slave devices D8 & D9 are added to create a realistic smart home.

(1) Properties 
Acquisition

(2) Test Case 
Generation

(3) Execution 
& Response 
Monitoring

Controller

crash?
no

yes

Log bugs

Fig. 7: High-level workflow of the fuzzing process.

turns the light on) can be mutated to [0x20, 0x06, 0xFF]
(an unsupported CMD) or [0x20, 0x01, 0x00] (a minimum
intensity value).

These mutations, combined with boundary testing of ex-
treme values, ensure the controller handles the full range
of inputs without failing. Together, these techniques identify
weaknesses, such as buffer overflow or underflow, and assess
the controller’s resilience to sophisticated attacks.

Finally, ZCOVER sends mutated packets to the target con-
troller to identify potential bugs and vulnerabilities. ZCOVER
examines the controller response to identify crashes, un-
expected responses, or any deviation from the controller’s
normal behavior. The information collected from this analysis
is then fed back to refine the fuzzing process, generating
more targeted test cases. This creates a feedback loop that
continuously improves the effectiveness of fuzzing. Figure 7
illustrates the high-level workflow of fuzzing.

IV. EVALUATION

In this section, we evaluate ZCOVER. Section IV-A investi-
gates zero-day vulnerabilities discovered by ZCOVER. Section
IV-B presents the efficacy of ZCOVER in assessing Z-Wave
controllers. Section IV-C compares ZCOVER with an existing
approach [9] to demonstrate its effectiveness. Finally, Section
IV-D presents the ablation study.
Implementation of ZCOVER. ZCOVER comprises five mod-
ules: a passive scanner and active scanner for retrieving target
device properties; a CMDCL cluster for discovering unknown
properties; a packet mutator for generating semi-valid test
cases; and a packet tester for validating selected packets saved
in the log file. All modules are implemented in 980 lines of
Python code (excluding external libraries) [21].
Testbed. The system under test (SUT) or testbed consists of
real-world Z-Wave devices used in smart homes, including the
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Memory
tampering

Fig. 8: Controller’s memory tampering attack. Smart door lock
ID #2 property is changed to routing slave.

Add fake
controllers

Fig. 9: Controller’s memory tampering attack. We inserted
rogue (fake) controllers of ID #10 and #200.

latest S2, S0, and legacy devices from various manufacturers.
The aim is to achieve a diversified and unbiased evaluation.
Table II summarizes detailed information about the devices.
To replicate the smart home environment, we included two
slave devices D8 and D9 in the testbed.
Experiment environment. We ran ZCOVER on a machine
with Ubuntu 18.04.6 LTS, an Intel Core i5-7th Gen CPU
(2.5 GHz), 8GB of RAM, and a 500GB SSD. The Z-Wave
primary controller, i.e., the Samsung SmartThings hub (see
Table II), was connected to the Internet and used the Smart-
Things app installed on an iPhone 15 to remotely control
the device via the 5G communication network. Moreover, we
used the Yardstick [22] dongle as the Z-Wave transceiver due
to its support from the open-source community. The Ubuntu
machine running ZCOVER was placed at an average distance
of 10 to 70 meters from the target device.

Additionally, we used Z-Wave PC Controller program to
control the USB interface controllers (i.e., D1-D5 in Ta-
ble II). The program ran on a Samsung Galaxy Book (Model
NT951XDB) laptop running Microsoft Windows 10, equipped
with an Intel Core i7-1165G7 CPU (2.8 GHz), 16GB of RAM,
and a 500GB SSD. Following recommended fuzzing practices,
we conducted five 24-hour fuzzing trials for each controller.
Note that the fuzzing duration can be adjusted manually by
the operator.

A. Zero-day vulnerabilities discovery

Table III summarizes the zero-day vulnerabilities discov-
ered by ZCOVER. As a result of applying ZCOVER to the
selected target controllers, it successfully discovered 15 zero-
day vulnerabilities, 12 of which have been assigned new CVE
IDs. The remaining vulnerabilities have also been reported and
confirmed.

These vulnerabilities reside in the Z-Wave specification
and implementation. Their root causes include a lack of
authentication, weak identity verification, inadequate access
control, missing packet validation, and unencrypted sensitive
data (e.g., CMDCL 0x01).

Remove
devices

Fig. 10: Controller’s memory tampering attack. Removing
device ID #2 and ID #3 in the controller’s memory.

Overwriting
database

Fig. 11: Overwriting the controller’s device table database with
fake devices.

We present case studies regarding key proof-of-concept
attack scenarios related to selected critical zero-day vulner-
abilities found by ZCOVER. In addition, we provide sample
videos in [10], [11] highlighting the impact of vulnerabilities
found on real devices.

Bug ID #01: Memory corruption in existing slave device
properties. This attack involves manipulating the properties of
a slave device stored in the controller’s memory. In Figure 8,
the initial memory list of our controller includes device ID #2,
representing the smart door lock (D8 in Table II) employing
the latest S2 security encryption. Despite the utilization of this
advanced encryption, we identified a vulnerability exploited by
an unlisted proprietary CMDCL 0x01, responsible for manag-
ing the node in the controller memory. This CMDCL should
undergo encryption for processing; however, we discovered
its acceptance of non-encrypted Z-Wave packets, leading us to
further investigation. This vulnerability stems from a flaw in
the Z-Wave specification. Upon injecting malicious payloads,
the properties associated with the smart lock vanish from the
controller’s memory, resulting in the user being unable to
control the door.

Bug ID #02: Fake or rogue device insertion into controller’s
memory. By exploiting this attack, we can insert fake devices
behaving like controllers into the main Z-Wave valid controller
(see Figure 9). These rogue devices can compromise security
by serving as entry points for attackers, intercepting and ma-
nipulating data, and causing system instability or malfunction.
They are difficult to detect due to their resemblance to genuine
devices.
Bug ID #03: Removing valid device in the controller’s
memory. Removing a valid device from the smart home con-
troller memory can significantly impact functionality, security,
and user experience. For instance, removing the initial device
ID #2 (see Figure 10) could disable door automation, create
security vulnerabilities, and disrupt automation sequences.
This necessitates re-configuring settings and routines, leading
to user inconvenience and frustration.
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TABLE III: Zero-day vulnerability discovery results of ZCOVER. For ethical reasons, full packet payloads are not disclosed.

Bug ID Affected
devices CMDCL CMD Description Duration Root cause Confirmed

01 D1 - D7 0x01 0x0D Memory corruption in existing device properties. Infinite* Specification CVE-2024-50929
02 D1 - D7 0x01 0x0D Fake device insertion into controller’s memory. Infinite Specification CVE-2024-50920
03 D1 - D7 0x01 0x0D Remove valid device in the controller’s memory. Infinite Specification CVE-2024-50931
04 D1 - D7 0x01 0x0D Overwriting the controller’s device database. Infinite Specification CVE-2024-50930
05 D6 and D7 0x01 0x02 DoS on smartphone app. Infinite Specification CVE-2024-50921
06 D1 - D5 0x9F 0x01 Z-Wave PC controller program crash. Infinite Implementation CVE-2023-6640
07 D1 - D7 0x5A 0x01 Service interruption during the attack. 68 sec Specification CVE-2023-6533
08 D1 - D7 0x59 0x03 Service interruption during the attack. 67 sec Specification CVE-2024-50924
09 D1 - D7 0x7A 0x01 Service interruption during the attack. 63 sec Specification CVE-2023-6642
10 D1 - D7 0x86 0x13 Service interruption during the attack. 4 sec Specification CVE-2023-6641
11 D1 - D7 0x59 0x05 Service interruption during the attack. 62 sec Specification CVE-2023-6643
12 D1 - D7 0x01 0x0D Remove the device’s wakeup interval value. Infinite Specification CVE-2024-50928
13 D1 - D5 0x73 0x04 Dos on the Z-Wave PC controller program. Infinite Implementation ✓
14 D1 - D7 0x01 0x04 Z-Wave controller service disruption. 4 min Specification ✓
15 D1 - D7 0x7A 0x03 Service interruption during the attack. 59 sec Specification ✓

*Infinite: Users cannot control their devices. ✓: Vendors acknowledged the reported bugs.

Bug ID #04: Overwriting the controller’s database. Over-
writing the smart home controller’s device database can
severely impact functionality, security, and stability (see Fig-
ure 11). This results in the loss of all device configurations,
requiring manual reconfiguration. It disrupts automation rou-
tines, causing device behavior inconsistencies and potential
service interruptions. Without proper backups, critical data
can be permanently lost or corrupted, making restoration a
complex and time-consuming process.
Bug ID #05: DoS on smartphone app. This attack disrupts
system functionality by preventing legitimate users from ac-
cessing the smart home. A DoS occurred on the SmartThings
app when ZCOVER sent a mutated packet with CMDCL 0x01
to the controller. During the attack, the homeowner was unable
to control the smart switch due to the controller processing the
malicious packet.
Bug ID #06: Z-Wave PC controller crash. The Z-Wave
PC controller program, used on Windows laptops with USB
stick controllers (D1-D5 in Table II), experiences a DoS attack
causing it to crash repeatedly. During the attack, users lose
control of all devices, and the program only functions normally
if the attack stops.

Bug ID #07 to #11 and #15: Service interruption. These
attacks exploit vulnerable CMDCLs by injecting fuzzed packets
into the target controller. Although these CMDCLs should
require encryption, we discovered that the controller incor-
rectly processes non-encrypted packets. As a result, injecting
malicious payloads rendered the controller unresponsive, pre-
venting legitimate control during the attack.
Bug ID #12: Removal of wake-up interval. This attack
exploits vulnerable CMDCL, allowing an attacker to remove
the wake-up interval value of a device on the target controller.
Since the Z-Wave specification does not enforce strict valida-
tion, the controller incorrectly processes the malicious request.
As a result, the network becomes unresponsive, requiring
manual intervention to restore functionality.

Bug ID #13: DoS on Z-Wave PC Controller. This vulner-
ability affects Z-Wave PC controller software by exploiting
CMDCL 0x73 and CMD 0x04, leading to a persistent DoS.
Since the issue persists indefinitely, users lose control of all
connected Z-Wave devices, disrupting the smart home system
until the software is manually restarted or patched.

Bug ID #14: Z-Wave controller service disruption. We ob-
served a DoS attack on the Z-Wave controller when ZCOVER
sent a mutated WAKEUP CMDCL packet, causing network
disruption for over four minutes. During this time, users lost
device control and did not receive intrusion notifications. The
attack involved a single packet that kept the controller busy
searching for non-existent Z-Wave devices.

Responsible disclosure. Since November 2023, we have
submitted vulnerability reports to the US-CERT/CC division
[23] to collaborate with the chipset and device manufacturers
responsible for addressing and reducing the risks we identi-
fied. All vulnerabilities we reported were confirmed, and 12
vulnerabilities were assigned new CVE IDs.

CERT/CC added more than 16 vendors during the process
and Silicon Labs has provided two security advisory reports on
the found vulnerabilities along with their remediation. These
significant security advisories can be accessed and downloaded
after creating a free account and logging into the Silicon
Labs platform [24], [25]. Considering ethical concerns, we
refrain from disclosing the details of ZCOVER PoC exploit
code and payload to prevent potential misuse by malicious
actors targeting smart home devices.

Feedback & crash verification. During fuzzing, we assess
test cases by monitoring controller liveliness using NOP ping
packets. Any delays, crashes, or unresponsiveness indicate
potential vulnerabilities, which are manually verified due to the
closed-source nature of Z-Wave devices. After validation, we
develop proof-of-concept (PoC) exploits for selected critical
vulnerabilities.
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Fig. 12: ZCOVER’s vulnerability detection on four devices
is shown, with time on the x-axis, test packets on the y-
axis, and red crosses marking discoveries. The experiment
lasts 24 hours, but the figures highlight the initial fuzzing
phase where most of the 15 unique zero-day vulnerabilities,
including duplicates, were detected.

B. Efficacy of ZCOVER

1) Fingerprinting and property discovery: Table IV sum-
marizes ZCOVER’s fingerprinting and its discovery of un-
known properties. ZCOVER identified nearly twice as many
unknown CMDCLs as known ones and effectively fingerprinted
target controllers by extracting key properties (e.g., home ID,
node ID, CMDCLs) for subsequent security analysis. This result
also demonstrated that our property extraction techniques are
device-independent and unrestricted.

2) Performance: We evaluated ZCOVER’s efficiency during
fuzzing by examining the number of vulnerabilities discovered
over time and the number of test cases. Figure 12 presents the
experimental results.

The first thing to note is that many vulnerabilities were
discovered in the early stages of fuzzing (e.g., less than
600 seconds) owing to the approach of prioritizing CMDCLs
used by ZCOVER. Additionally, ZCOVER was able to detect
numerous vulnerabilities within a relatively short period of
time. Unlike traditional fuzzing, which typically tests target
devices using millions of packets over several hours, ZCOVER
successfully identified many vulnerabilities within an aver-
age of 600 seconds and 800 test packets by considering
both known and unknown CMDCLs and performing position-
sensitive mutation. This result suggests that ZCOVER can
effectively discover vulnerabilities in the controller of the real-
world Z-Wave smart home systems within a short period of
time.

TABLE IV: Controllers’ known properties fingerprinting and
unknown properties discovery results by ZCOVER.

ID Passive scanning Active scanning Unknown CMDCLsHome ID Node ID Known CMDCLs

D1 E7DE3F3D 0x01 17 CMDCLs 28 CMDCLs
D2 CD007171 0x01 17 CMDCLs 28 CMDCLs
D3 CB51722D 0x01 15 CMDCLs 30 CMDCLs
D4 C7E9DD54 0x01 17 CMDCLs 28 CMDCLs
D5 F4C3754D 0x01 15 CMDCLs 30 CMDCLs
D6 CB95A34A 0x01 17 CMDCLs 28 CMDCLs
D7 EDC87EE4 0x01 15 CMDCLs 30 CMDCLs

TABLE V: CMDCL coverage and unique vulnerability discov-
ery results (#Vul.) on controllers from VFUZZ and ZCOVER.
The fuzzing was performed for 24 hours.

ID VFUZZ ZCOVER

CMDCL* CMD #Vul. CMDCL† CMD #Vul.

D1 256 256 1 45 53 15
D2 256 256 3 45 53 15
D3 256 256 0 45 53 15
D4 256 256 4 45 53 15
D5 256 256 0 45 53 15

*Whole range of 256 CMDCLs covered by VFUZZ.
†45 CMDCLs (known and unknown) are prioritized by ZCOVER.

C. Comparison with an existing approach

Here, we compared ZCOVER with an existing technique
for enhancing Z-Wave smart home security. Although various
related approaches exist, there were instances where (1) we
could not use the closed-source tools despite multiple requests
to the authors, and (2) the approaches could not be applied
to the Z-Wave controllers. Therefore, we performed a direct
comparison between ZCOVER and VFUZZ [9], which is a
recent security research on the Z-Wave protocol.

In the experiment, we applied VFUZZ to devices D1 through
D5 (see Table II) in the same environment used in our
ZCOVER experiments. We performed fuzzing for 24 hour with
both ZCOVER and VFUZZ, and examined the detected unique
vulnerabilities.

Table V summarizes the experimental results. First of all, we
observed that ZCOVER can detect significantly more unique
vulnerabilities compared to VFUZZ. Specifically, all vulner-
abilities detected by ZCOVER were previously unknown,
whereas the results of VFUZZ included known one-day vul-
nerabilities. Interestingly, according to our manual analysis,
there were no vulnerabilities found in common between both
tools. This is the result of differences in the Z-Wave packet
fields targeted for the mutation (e.g., VFUZZ focuses on the
MAC frame of the Z-Wave packets) and differences in mutation
methods.

The primary reason for the difference in the number of
detected vulnerabilities lies in whether the properties of the
controller were adequately considered. As indicated in Ta-
ble V, VFUZZ generated test packets using a broader range of
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CMDCLs and CMDs. Hence, many of the test packets generated
by VFUZZ failed to assess efficiently the application layer
implementation of the target controller, resulting in less bugs,
thereby reducing the efficiency of fuzzing.

On the other hand, ZCOVER identifies both known and
unknown proprietary CMDCLs of the target controller (i.e., 45
CMDCLs) and performs mutations considering the correlation
between CMDCLs and CMDs. This enabled the generation of
more effective test packets within the same timeframe, leading
to the detection of more vulnerabilities.

By focusing on the application layer and effectively identi-
fying controller properties, while using mutations that consider
correlations between packet fields, ZCOVER outperforms ex-
isting Z-Wave security techniques in detecting vulnerabilities,
demonstrating its effectiveness.

D. Ablation study

To assess the impact of ZCOVER core techniques, we
conducted an ablation study by enabling and disabling key
features during fuzzing. The study aimed to measure the
effectiveness of known and unknown CMDCLs discovery and
position-sensitive mutation in vulnerability detection. By sys-
tematically adjusting these parameters, we evaluated how each
contributed to ZCOVER’s overall performance.

In our experiment, we ran ZCOVER for one hour under three
different configurations:

• ZCOVER full functionality. Enabled both known and
unknown CMDCLs discovery, and position-sensitive mu-
tation of CMDCL’s correlated CMD and PARAMs.

• ZCOVER β fuzzing with only known CMDCLs. Used
position-sensitive mutation while ignoring unknown
CMDCLs.

• ZCOVER γ fuzzing with random mutation. Selected
CMDCLs, CMD, and PARAM values randomly without
considering ZCOVER core features.

The results in Table VI highlight the advantage of ZCOVER
targeted and structured mutation approach, confirming that
its methodology significantly improves fuzzing efficiency and
vulnerability detection. The findings confirm that full ZCOVER
functionality maximizes vulnerability detection, demonstrating
the value of discovering hidden CMDCLs and leveraging struc-
tured, position-sensitive mutation. Fuzzing with only known
CMDCLs identified vulnerabilities but missed critical flaws in
unlisted properties, while random fuzzing was the least effec-
tive, reinforcing the need for ZCOVER systematic approach.
These results validate the rationale behind ZCOVER design
choices and its practical effectiveness in security analysis on
Z-Wave controller.

V. DISCUSSION

A. Research importance

With over 100 million devices globally [9], the Z-Wave
ecosystem faces security challenges, as legacy devices lack
protection and S2 devices provide only partial security.

TABLE VI: Results of the ablation study on ZCOVER core
features and unique vulnerability discovery found (#Vul.). The
fuzzing was performed for one hour on Zooz controller.

Test Fuzzing Configuration #Vul.

1 ZCOVER full (Known + Unknown CMDCLs +
Position-Sensitive Mutation)

15

2 ZCOVER β (Known CMDCLs Only + Position-
Sensitive Mutation)

8

3 ZCOVER γ (Random CMDCLs + No Position-
Sensitive Mutation)

6

ZCOVER addresses these issues by assessing the central con-
troller’s security, enhancing the overall Z-Wave network. By
uncovering 15 unknown vulnerabilities, ZCOVER proves its
practicality, enabling safer device development and a more
secure smart home environment for users.

B. Attack remediation

To address discovered vulnerabilities, S2 devices should
block malicious payloads via updated Z-Wave specifications.
For legacy devices, a lightweight intrusion detection system
(IDS) (e.g., [15]) can detect attacks and trigger alarms or alerts.
Easy firmware updates should be supported to patch future vul-
nerabilities, and manufacturers must prioritize security during
device design.

We collaborated with Silicon Labs (SiLabs) and vendors
to address these issues. SiLabs confirmed mitigation plans for
recent devices and announced a Z-Wave SDK update to secure
additional devices. They also issued two security advisories,
and the Z-Wave Alliance will incorporate our findings in the
next Z-Wave specification update.

C. Threats to validity

The validity of ZCOVER’s findings may be influenced
by several factors. First, the proprietary nature of Z-Wave
controllers limits our understanding of the information avail-
able through public documentation and reverse engineering.
Therefore, hidden or undocumented behaviors could affect the
comprehensiveness of our vulnerability assessment. Second,
the fuzzing approach of ZCOVER might not cover all possible
edge cases, especially those that require specific environmental
conditions or sequences of operations to manifest. Third, the
hardware and software configurations of Z-Wave controllers
can vary across manufacturers and models. However, because
all Z-Wave devices from different manufacturers must have
a Z-Wave chipset onboard for interoperability, our findings
apply to all manufacturers.

D. Limitations

Although ZCOVER has discovered a number of unknown
vulnerabilities in real Z-Wave controllers, there are several
limitations that could be improved.

First, due to the closed-source nature of Z-Wave controller
firmware and proprietary documentation, ZCOVER might miss
certain vulnerabilities or misinterpret some device behaviors
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that could be better understood with full access to the source
code and detailed technical specifications. Second, as ZCOVER
operates as an external entity without privileged access to the
network, it relies on external sniffing and packet injection
techniques. This approach may not capture all nuances of the
internal processing of the controller, potentially overlooking
some subtle security issues. Last, while ZCOVER automates
much of the testing process, interpreting the implications
of discovered vulnerabilities may require significant manual
effort and expert knowledge. These limitations highlight areas
where ZCOVER can be improved and underscore the impor-
tance of using it as part of a broader security assessment
strategy that includes multiple tools and approaches. Despite
these limitations, we believe that ZCOVER provides a robust
framework for enhancing the security of Z-Wave controllers.

VI. RELATED WORKS

Several studies have been conducted to identify Z-Wave
vulnerabilities (e.g., [6], [7], [17], [26]–[28]). For example,
Fouladi and Ghanoun [7] examined the security of the Z-Wave
protocol by focusing on its encryption mechanisms. However,
these studies are not applicable to discover the vulnerabilities
within the controller’s application layer. Similarly, several
studies have been conducted to increase Z-Wave security (e.g.,
[29]–[35]), but these have focused on attacks that can occur
in communication rather than application layer vulnerabilities,
thus they cannot be applied to detecting unknown vulnerabil-
ities in the Z-Wave controller.

There are two studies that focus on the internal vulnera-
bilities of Z-Wave devices (e.g., [5], [9]). Xiaoyue et al. [5]
presents HubFuzzer, a fuzzing technique for discovering vul-
nerabilities in IoT devices that communicate using ZigBee
and Z-Wave protocols. However, HubFuzzer runs on a Z-
Wave controller to test slave devices; in other words, it cannot
be applied to detect vulnerabilities in the Z-Wave controller.
Nkuba et al. [9] introduced VFUZZ, a fuzzing framework
for testing Z-Wave devices. While this work is effective
for general Z-Wave analysis, its broader approach does not
provide the depth and specificity required to thoroughly assess
the Z-Wave controller’s application layer implementation (see
Section IV-C).

Other research investigated the security of IoT devices and
other protocols (e.g., IP, Wi-Fi, Bluetooth, and ZigBee [36]–
[43]). While the techniques could be adapted for Z-Wave, the
research did not specifically target Z-Wave, thereby failing to
address application layer vulnerabilities and unknown com-
mand classes specific to Z-Wave.

ZCOVER highlights the practical impact of these vulner-
abilities through proof-of-concept attack scenarios on a real
Z-Wave smart home setup, emphasizing the need for better
security testing and hardening of Z-Wave devices.

VII. CONCLUSION

As the Z-Wave protocol is widely used as a key fea-
ture of smart home systems, issues regarding its security
are increasing. In this paper, we discover the vulnerabilities

contained in the Z-Wave smart home controllers by leverag-
ing our new security testing framework called ZCOVER. By
identifying hidden properties (e.g., unknown CMDCLs) as well
as known properties (e.g., home ID and listed CMDCLs) of
the target Z-Wave controller and utilizing position-sensitive
mutation that considers the correlation of Z-Wave packet
frame fields, ZCOVER improves the security and robustness
of Z-Wave target devices. Our evaluation results revealed that
ZCOVER could discover critical vulnerabilities in Z-Wave
controllers, by detecting 15 new zero-day vulnerabilities.
Through ZCOVER, Z-Wave device developers can improve the
devices’ security, and Z-Wave smart home users can enjoy
more secure services. ZCOVER is publicly available at [21]
and will be serviced on https://iotcube.net.
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