
BLOOMFUZZ: Unveiling Bluetooth L2CAP
Vulnerabilities via State Cluster Fuzzing

with Target-Oriented State Machines

Pyeongju Ahn, Yeonseok Jang, Seunghoon Woo(B), and Heejo Lee(B)

Korea University, Seoul, South Korea
{pingjuu,yeonseok,seunghoonwoo,heejo}@korea.ac.kr

Abstract. Bluetooth technologies are widely utilized across various
devices. Despite the advantages, the lack of security in Bluetooth can
pose critical threats. Existing approaches that rely solely on Bluetooth
specification have failed to bridge the gap between documentation and
implemented devices. Therefore, they struggle to (1) precisely generate
state machines for target devices and (2) accurately track states during
the fuzzing process, resulting in low fuzzing efficiency. In this paper, we
propose BloomFuzz, a stateful fuzzer to discover vulnerabilities in Blue-
tooth Logical Link Control and Adaptation Protocol (L2CAP) layer. Uti-
lizing the concept of the state cluster, which is a set of one or more states
with similar attributes, BloomFuzz can generate a target-oriented state
machine by pruning unimplemented states (missing states) and address-
ing states that are implemented but not introduced in the specification
(hidden states). Furthermore, BloomFuzz enhances fuzzing efficiency
by generating valid test packets for each cluster via cluster-based state
machine tracking. When we applied BloomFuzz to real-world Bluetooth
devices, we observed that BloomFuzz outperformed existing L2CAP
fuzzers by (1) discovering 56 potential vulnerabilities (more than twice
compared to existing fuzzers), (2) precisely generating a target-oriented
state machine, (3) significantly reducing the probability of test packets
being rejected (from 76% to 23%), and (4) producing nine times more
valid malformed test packets. Our proposed approach can contribute to
preventing threats within L2CAP, thereby rendering a secure Bluetooth
environment.

Keywords: Bluetooth Security · L2CAP Security · Stateful Fuzzing

1 Introduction

Bluetooth is an integral aspect of our daily lives and facilitates seamless wireless
communication between various devices. Owing to the proliferation of Bluetooth-
enabled devices, addressing security issues has become increasingly important.
This is because the current landscape underscores the urgent requirement for
robust Bluetooth security measures, considering the potential risks posed by
unauthorized access, data breaches, and malicious attacks [2,4,21,27].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Garcia-Alfaro et al. (Eds.): ESORICS 2024, LNCS 14984, pp. 110–129, 2024.
https://doi.org/10.1007/978-3-031-70896-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70896-1_6&domain=pdf
https://doi.org/10.1007/978-3-031-70896-1_6

BloomFuzz 111

To secure Bluetooth devices, one effective approach is leveraging fuzz test-
ing (i.e., fuzzing); because Bluetooth implementation operates based on states,
stateful fuzzing (see Sect. 2.1) has been widely utilized. For this purpose, existing
approaches first generate the Bluetooth state machine of the target device (e.g.,
by examining the Bluetooth specification) and then perform fuzzing.

Unfortunately, performing effective fuzzing on Bluetooth devices is becoming
challenging mainly owing to the following two aspects.

1) Gap between specification and implementation. Bluetooth devices do
not strictly adhere to the states and transitions specified in the specification.
In practice, the states and transitions specified in the specification may not
be implemented (i.e., missing states), or the states and transitions that are
not mentioned in the specification may be implemented (i.e., hidden states).

2) Difficulty in state tracking. To conduct efficient stateful fuzzing, it is
essential to track the current state of the target device. However, when
many packets are sent to the target device, state transitions occur non-
deterministically, thus hindering the accuracy of state tracking.

Existing Bluetooth stateful fuzzing approaches (e.g., [5,12,13]) failed to fully
address the aforementioned challenges. For example, L2Fuzz [13] assumes that
the states and transitions specified in the specification are implemented on the
target device identically, compromising the efficiency of fuzzing (e.g., sending
test packets to unimplemented states). Moreover, existing approaches do not
fully consider the current state of the target device, leading to an increased
possibility of test packets being rejected (details are explained in Sect. 2.2).

To overcome these shortcomings, we propose BloomFuzz, a stateful fuzzer
designed for Bluetooth host stacks. BloomFuzz targets the Logical Link Con-
trol and Adaptation Protocol (L2CAP) layer, which is the lowest layer in all
Bluetooth devices and is thus a particularly sensitive area for security.

The core idea of BloomFuzz is to define and leverage a state cluster instead
of individually considering each state. We define a cluster as a set of one or
more states that share similar attributes, such as valid L2CAP commands (see
Sect. 3.1). By using clusters, BloomFuzz addresses the two main challenges
mentioned above and achieves effective Bluetooth L2CAP fuzzing.

To precisely generate a state machine for the target device, BloomFuzz ini-
tially considers the one presented in the Bluetooth specification. Subsequently, it
(1) prunes missing states and (2) addresses hidden states. BloomFuzz identi-
fies whether the specified states have been implemented on the target device
by sending valid signaling packets to each state; if BloomFuzz cannot receive
the corresponding response, then it considers the state as not implemented and
removes it from the state machine. Thereafter, to address the hidden states,
BloomFuzz utilizes a method called packet recording. After clustering the states
in the state machine, we capture the normal communication packets between
the target device and BloomFuzz to identify the structure of the internal state
machines of each cluster. Consequently, by examining the entire set of clusters,
BloomFuzz generates a target-oriented state machine for the target device (see
Sect. 3.1).

112 P. Ahn et al.

Thereafter, BloomFuzz traverses a target-oriented state machine to per-
form fuzzing on the target device. Here, BloomFuzz overcomes the challenge
of state tracking by traversing the state machine based on clusters. By designing
clusters to ensure the occurrence of nondeterministic state transitions within
a single cluster, BloomFuzz can identify the cluster where the target device
resides, irrespective of the internal state structures within the cluster. Moreover,
when mutating packets for testing, BloomFuzz utilizes AFL operators [29] and
considers edge cases to generate more effective test packets (see Sect. 3.2). By
transmitting the test packets based on the cluster in which the target device is
located, BloomFuzz can perform efficient L2CAP fuzzing (see Sect. 3.3).

To evaluate BloomFuzz, we apply it to seven real-world devices utiliz-
ing Bluetooth (see Table 2). The result shows that BloomFuzz uncovers 56
potential vulnerabilities in six devices (see Sect. 4.2). Additionally, we compared
BloomFuzz with the following three L2CAP stateful fuzzers: BSS [5], BFuzz
[12], and L2Fuzz [13]. We observed that BloomFuzz outperformed existing
approaches by (1) uncovering twice as many crashes, (2) generating the imple-
mented state machine on the target device more precisely, (3) reducing the prob-
ability of test packets being rejected by the target device (from 76% to 23%),
and (4) generating nine times more malformed testing packets (see Sect. 4).

This paper makes the following three main contributions.

– We, for the first time, highlighted the discrepancies in the L2CAP state
machine between the Bluetooth specification and the implemented devices,
and proposed a method to effectively address missing and hidden states based
on the concept of state clusters.

– We propose a method to enhance fuzzing efficiency by precisely determining
the current state of the target device within the state machine. The core
technology involves tracking state machines based on clusters, resulting in a
reduced probability of a test packet being rejected (from 76% to 23%).

– When we applied BloomFuzz to seven real-world Bluetooth devices, it
detected 56 crashes, thereby outperforming existing L2CAP fuzzers. We have
reported reproducible vulnerabilities to the respective vendors, and some of
them were confirmed and will be patched. The source code BloomFuzz is
available at https://github.com/pingjuu/BLOOMFUZZ/.

2 Motivation

2.1 Background

Bluetooth L2CAP. The Bluetooth protocol stack can be classified into the
host and controller stacks. The L2CAP layer is situated at the bottom of the host
stack. The L2CAP facilitates the transmission and reception of upper-layer data
packets for higher-level protocols and applications. In Bluetooth communication,
the L2CAP performs functions such as data transmission and channel control,
including channel flow control, retransmission, and connection request.

https://github.com/pingjuu/BLOOMFUZZ/

BloomFuzz 113

Fig. 1. L2CAP packet format.

L2CAP Packet. The L2CAP is packet-based but reflects a communication
model based on channels. An L2CAP packet comprises a header and a payload
(see Fig. 1). The L2CAP header indicates the type of L2CAP packet, which
is categorized into (1) signaling and (2) data packets based on the Channel
ID. Signaling packets are used to transmit commands for managing Bluetooth
communications and comprise four fields: Code, Identifier, Data Length, and
Data Fields. The Code and Identifier indicate the L2CAP command code
and packet ID, respectively. The Data Length represents the length of a specific
field, and the Data Fields vary depending on the L2CAP command.

Stateful Fuzzing. The communication process of the L2CAP can be repre-
sented by states. Stateful fuzzing refers to a fuzzing technique designed to con-
sider these states to detect potential threats. When a peripheral (i.e., slave)
receives an event from a central (i.e., master), it performs an action and tran-
sitions from the current to the next state. Most events and actions correspond
to L2CAP commands, with events triggered by the signaling packets. Because
invalid events for a certain state are disregarded, stateful fuzzing in L2CAP
enables efficient fuzzing by considering state transitions in the L2CAP.

2.2 Technical Challenges

Stateful fuzzing is an effective method for detecting threats in the L2CAP. How-
ever, this task is not straightforward owing to the following two aspects.

Difficulty in Precisely Generating a State Machine. The first step in
stateful fuzzing in L2CAP is to precisely construct a state machine for the tar-
get device. In this regard, existing approaches primarily (1) utilize the Bluetooth
specification [13] or (2) dynamically capture communication [7]. However, pre-
cisely constructing state machines is becoming increasingly challenging.

The main issue is that real-world Bluetooth devices typically employ a state
machine that is different from that mentioned in the specification. This is because
developers modify the state machine mentioned in the specification primarily to
ensure implementation efficiency. For example, Fig. 2 illustrates two different
state machines: the state machine of the Bluetooth v5.2 specification (Fig. 2a)
and the state machine of BlueDroid v12.1.0.r19 [1] (Fig. 2b), which was developed
based on the Bluetooth v5.2 specification.

114 P. Ahn et al.

Fig. 2. Comparison of specification- and implementation-based state machines.

To clarify, we delineated the relationship between the states in the specifi-
cation and those in the implementation. A state transition in the L2CAP (from
the source state vi to the destination state vj) is represented by (vi

e,a−−→ vj),
where vi, e, a, and vj denote the source state, event, action, and destination
state, respectively. We define three types of states.

– Normal state. This refers to a state defined in the specification and imple-
mented in the Bluetooth devices (e.g., 1 , 2 , and 3 in Fig. 2).

– Missing state. This refers to a state defined in the specification but not
implemented in the Bluetooth device.

– Hidden state. This refers to a state not defined in the specification but
implemented in the Bluetooth device, which can be accessed through transi-
tions not defined in the specification. Consider the transition defined in the
specification: (vi

e,a−−→ vj). Even when an event and action other than e and a
allow access to vj from vi, vj is defined as the hidden state.

Existing approaches based on the specification [13,19] include the missing
state in the state machine, thereby compromising the efficiency of fuzzing. In
addition, they fail to consider hidden states, thus resulting in reduced fuzzing
coverage. Meanwhile, existing approaches that aim to dynamically capture com-
munication from the target device to build the state machine [7] fail to correctly
address the hidden state. This is because they explore the states based on the

BloomFuzz 115

Fig. 3. High-level overview of BloomFuzz.

transitions in the specification, thereby hindering the effective generation of the
state machine. Therefore, a method is required to precisely generate the state
machine for the target device by addressing the missing and hidden states.

Difficulty in Correctly Tracking States. To achieve effective stateful
fuzzing, it is essential to identify the current state in which the target device
resides. This directly translates to the ability to generate valid test packets that
are not rejected by the target device. To track the state, starting from the initial
state of the state machine, the fuzzer sends the desired events to induce state
transitions.

However, in environments where numerous packets are transmitted in a short
period (e.g., fuzzing), predicting state transitions becomes challenging, primarily
owing to the difficulty of matching sent and received packets. Responses to earlier
sent packets often arrive later than responses to subsequently sent packets. In
addition, the target device may not provide a response, or non-deterministic
transitions may occur (e.g., zero-, single-, and multi-state transitions). Hence,
identifying the state in which the target device resides is not an easy task.

3 Design of BLOOMFUZZ

In this section, we describe the design of BloomFuzz, which is a stateful fuzzer
that can effectively detect vulnerabilities in the Bluetooth L2CAP.

Overview. BloomFuzz detects crashes (i.e., potential vulnerabilities) in the
L2CAP via two main stages: preprocessing and fuzzing. It is organized into the
following three phases: target-oriented state machine construction (P1), cluster-
based packet mutation (P2), and crash detection (P3). Figure 3 depicts the high-
level workflow of BloomFuzz. The distinguishing concept of BloomFuzz is its
consideration of state clusters, a set of states characterized by similar attributes.

In P1, BloomFuzz generates a target-oriented state machine on the tar-
get device (see Sect. 3.1). BloomFuzz initially generates a state machine from
the specification. Subsequently, it verifies all states in the specification-based
state machine to confirm its implementation on the target device and eliminates

116 P. Ahn et al.

Table 1. 19 states in the specification are classified by (1) L2CAP commands and (2)
the role of a target device, which became 12 state clusters.

Cluster
IDX

States Commands Role∗

1 CLOSED All commands C/P

2 WAIT CONNECT L2CAP Connect Req/Rsp P

3 WAIT CONNECT RSP L2CAP Connect Req/Rsp C

4 WAIT CREATE L2CAP Create Channel Req/Rsp P

5 WAIT CREATE RSP L2CAP Create Channel Req/Rsp C

6 WAIT CONFIG L2CAP Configuration Req/Rsp C/P

7 WAIT SEND CONFIG,
WAIT CONFIG RSP,
†WAIT IND FINAL RSP,
†WAIT FINAL RSP,
†WAIT CONTROL IND

L2CAP Configuration Req/Rsp P

8 WAIT CONFIG REQ,
WAIT CONFIG REQ RSP,
†WAIT IND FINAL RSP,
†WAIT FINAL RSP,
†WAIT CONTROL IND

L2CAP Configuration Req/Rsp C

9 OPEN All commands C/P

10 WAIT MOVE,
WAIT MOVE CONFIRM

L2CAP Move Channel Req/Rsp,
L2CAP Move Channel Confirmation Req/Rsp

P

11 WAIT CONFIRM RSP,
WAIT MOVE RSP

L2CAP Move Channel Req/Rsp,
L2CAP Move Channel Confirmation Req/Rsp

C

12 WAIT DISCONNECT L2CAP Disconnection Req/Rsp C/P

*The role of the target device (Central or Peripheral); †States belonging to Clusters #7
and #8.

missing states. BloomFuzz addresses hidden states by incorporating a packet
recording method, thus resulting in a target-oriented state machine.

In P2, BloomFuzz traverses the state machine of the target device and
generates a test packet for each state (see Sect. 3.2). Here, BloomFuzz identifies
the cluster in which the target device is currently located and consequently
generates well-crafted test packets with a low probability of being rejected by
the target device. Additionally, it enhances the efficiency of packet mutation by
(1) using modified AFL operators and (2) considering edge cases.

Finally, in P3, the generated test packets are used to scrutinize the target
device and verify its safety (see Sect. 3.3).

3.1 State Machine Construction (P1)

Given a target device and the Bluetooth specification, BloomFuzz first gener-
ates a target-oriented state machine. Before providing detailed explanations, we
introduce the core concept of BloomFuzz, i.e., the cluster of states.

BloomFuzz 117

State Cluster. A cluster is a set of one or more states with similar attributes.
When distinguishing clusters, BloomFuzz utilizes two features: (1) valid
L2CAP commands and (2) the role of the target device. Table 1 summarizes
the state clusters defined in this paper. The process of creating clusters was per-
formed manually. While automation is possible, accuracy may decrease because
unapproved commands may be delivered in states. By adopting the concept of
a cluster, BloomFuzz can achieve two key effects: (1) the ability to correspond
to hidden states and (2) the efficient generation of test packets with a low prob-
ability of rejection during packet mutation for fuzzing. Detailed explanations are
provided in P1 and P2.

Generating a Specification-Based State Machine. Bluetooth devices are
developed based on specifications. Therefore, we first construct a state machine
based on the Bluetooth specification. This is accomplished through a manual
analysis of the specification while considering all the states and transitions men-
tioned herein (see Fig. 2a). Because the specification clearly describes the states
and transitions, the abovementioned task is not difficult [13].

Pruning Missing States. Merely utilizing the state machine specified in the
specification results in a lower fuzzing efficiency (see Sect. 2.2). To generate a
target-oriented state machine, BloomFuzz first prunes the missing states. This
is accomplished by traversing the specification-based state machine and verifying
whether the states specified in the specification are implemented in the target
device. The detailed process of pruning missing states is as follows.

1) We first manually extract several paths that encompass all states in the state
machine. BloomFuzz then traverses the specification-based state machine
by following the extracted paths. Here, BloomFuzz first assumes that the
state machine of the target device is consistent with that specified.

2) In each state, BloomFuzz sends a corresponding signaling packet to trigger
an event that induces a state transition. An appropriate signaling packet for
each state is specified in the specification.

3) If BloomFuzz receives the correct response (i.e., action) from the sent sig-
naling packet, then it determines that a corresponding state exists. Otherwise,
BloomFuzz concludes that the state is not implemented on the target device
(i.e., the missing state) and removes it from the state machine.

Notably, tracking states in stateful fuzzing is challenging especially when
multiple packets are sent to the target device in a short period (see Sect. 2.2).
However, this issue does not affect here because the current stage is pre-fuzzing,
thus BloomFuzz can track missing states by sending a single packet.

Addressing Hidden States. Next, BloomFuzz addresses hidden states by
identifying internal state structures (including hidden states) for each cluster

118 P. Ahn et al.

Fig. 4. Internal state examination of clusters via packet recording.

without relying on the specification. Subsequently, the state machines of clusters
are aggregated to generate a comprehensive target-oriented state machine.

To this end, BloomFuzz uses a technique called packet recording. Using a
packet capturing tool (e.g., Wireshark), we first captured the packets generated
during normal communication. After examining these packets, we ascertained the
structure of the states within the multistate cluster: (1) we parsed and obtained
all signaling packets sent by BloomFuzz, (2) transformed the captured packets
into the state machine, and (3) placed this state machine in the corresponding
cluster of the entire state machine. To include potential hidden states, we utilized
this approach regardless of the number of states within the cluster.

By utilizing this approach, BloomFuzz can track the states through which
normal communication packets pass, irrespective of the specification. Thus, it is
feasible to depict the states of the cluster while considering only the implemented
states. This allows BloomFuzz to address hidden states within the cluster.

For example, Fig. 4 illustrates the process of packet recording. As shown,
BloomFuzz sent packets using the L2CAP Configuration Req/Rsp codes.
Because the role of the target device during the packet recording was peripheral,
among the clusters mapped to the corresponding command (i.e., Cluster #7 and
#8), BloomFuzz can identify that this corresponds to Cluster #7 (see Table 1).
Subsequently, by capturing the packets, BloomFuzz identifies the state machine
of Cluster #7 and then integrates it into the entire state machine.

Output of P1. For the output of P1, BloomFuzz generates a target-oriented
state machine for the target device. Unlike conventional specification-based state
machines, target-oriented state machines do not include missing states as they
would compromise the efficiency of fuzzing. Also, they incorporate hidden states
within clusters, thereby they can be efficiently used in stateful fuzzing.

BloomFuzz 119

Fig. 5. Mutable field selection for packet mutation.

3.2 Cluster-Based Packet Mutation (P2)

Subsequently, based on a target-oriented state machine, BloomFuzz generates
packets to test the target device.

Packet Generation for Traversing the State Machine. In P2,
BloomFuzz traverses a target-oriented state machine and generates a valid
test packet for each state. The first step is to generate normal packets that can
transition to a state. This task is straightforward provided that we can deter-
mine the current state in which the target device resides. However, as mentioned
in Sect. 2.2, discerning the current state of stateful fuzzing is difficult.

Hence, we consider transitions at the cluster level. Instead of considering the
transitions for each state, BloomFuzz detects crashes (i.e., potential vulner-
abilities) in the target device by generating valid test packets and performing
fuzzing within each cluster. Note that multiple states within a single cluster can
recognize the same L2CAP command (see Table 1), resulting in a state tran-
sition accordingly. Thus, even if nondeterministic transitions occur for a single
signaling packet, the cluster to which the target device belongs can be identified.

Based on the clusters in Table 1 and the corresponding L2CAP commands,
BloomFuzz generates normal packets that can transition between clusters. As
a result, BloomFuzz is prepared to traverse the target-oriented state machine.

Field Classification. While traversing each cluster, BloomFuzz generates
packets to test the target device. If a packet with an invalid L2CAP command
is generated for the current cluster, then it is disregarded by the target device.
Therefore, BloomFuzz first generates valid packets for each cluster and per-
forms mutations only in fields that do not affect the packet validity.

L2CAP packets are composed of fields, as illustrated in Fig. 5. The Channel
ID must utilize 0x0001 to manage channels. If sensitive fields, such as Length-
related fields or the L2CAP command field, are randomly altered, then the possi-
bility of packet rejection by the target device increases significantly.

Hence, we focus on the Data fields of the L2CAP packet. Specifically, within
the Data fields, certain portions can impact the channels and ports. For exam-
ple, PSM is used for port setting, whereas SCID and DCID are used for channel con-
figuration (see Fig. 5). BloomFuzz generates packets to test the target device
by focusing on mutating particular areas (called mutable fields).

120 P. Ahn et al.

In addition, we include the garbage value at the end of the signaling packet.
This value is selected randomly within a range that does not exceed the Max-
imum Transmission Unit (MTU) of the packet. BloomFuzz also mutates the
garbage field to facilitate the discovery of crashes in the target device.

Packet Mutation. Unlike existing approaches that randomly mutated packets
(e.g., [12,13]), we applied AFL operators [29] to mutable fields to achieve more
diverse and efficient packet mutation. The AFL operator defines various changes
with effective mutations, including random mutations.

However, using the predefined 11 AFL operators (i.e., bitflip, byteflip,
arithmetic inc/dec, interesting values, user extras, auto extras, random
bytes, delete bytes, insert bytes, overwrite bytes, and cross over) in a
black-box Bluetooth fuzzer presents challenges. We need to modify some of them
to adapt to our specific target scenarios.

First, interesting values that required manual operations (i.e., the need
to manually select the area of interest) for application to BloomFuzz, as well as
user extras and auto extras, were excluded. Next, operators that can generate
invalid L2CAP packets by adjusting the length of bytes are adjusted as follows.

– The Insert byte was redefined as an operator that selects the length of the
garbage field to be used within the range of the MTU.

– The Delete byte was replaced with zero padding because randomly shorten-
ing the length of the field may increase the probability of packet rejection.

– The Overwrite byte and Random byte randomly set the values based on the
size of the field to be mutated.

For more diverse packet mutations, BloomFuzz randomly selects and uti-
lizes two different AFL operators simultaneously for packet mutation.

Addressing Edge Cases. Moreover, an edge operator was introduced to trig-
ger underflow and overflow. It sets one of the values among the minimum value,
maximum value, minimum value±1, and maximum value±1 of the mutable field.
Using the modified AFL and edge operators, BloomFuzz modifies the mutable
fields to generate various test packets.

Output of P2. For the output of P2, BloomFuzz generates mutated packets
to test the target device. These packets are cluster-based, and their probability of
being rejected by the target device is lower than that of randomly generated test
packets. Additionally, BloomFuzz enhances the efficiency of packet mutations
by leveraging the garbage field, AFL, and edge operators.

3.3 Crash Detection (P3)

Finally, BloomFuzz detects crashes by sending mutated packets to the tar-
get device. During the fuzzing process, if any of the following five errors

BloomFuzz 121

Table 2. The list of target devices used in our experiments.

ID Type Vendor Name Model Chip OS/FW ∗ BT † Y ‡

D1 Laptop LG Gram 15ZD990-VX50K Intel wireless BT Windows 10 5.0 2019

D2 Laptop LG Gram 15ZD970-GX55K Intel wireless BT Ubuntu 18.04.4 5.0 2017

D3 Phone Google Pixel7 GVU6C Google Tensor G2 Android 14 5.2 2022

D4 Phone Google Pixel3 GA00464 Snapdragon 845 Android 12 5.0 2018

D5 Tablet Samsung Galaxy Tab S6 Lite SM-P610 Snapdragon 855 Android 12 5.0 2019

D6 Earphone Samsung Galaxy Buds+ SM-R175 BCM43015 R175XXU0AUK1 5.0 2020

D7 Earphone Xiaomi Redmi Buds 3 Pro TWSEJ01ZM QCC3040 1.0.9.9 5.2 2021

*OS/FW: Operating system or firmware; †BT: Bluetooth version; ‡Y: Released year.

occur – ConnectionResetError, ConnectionRefusedError, Connection-
AbortedError, TimeoutError, and OS Error – BloomFuzz concludes that
the packet has unintentionally affected the target device. Upon receiving one
of these error messages, BloomFuzz requests an L2CAP echo from the target
device using l2ping to verify its continued functionality. If the target device
fails to respond to the echo request, BloomFuzz determines that a crash has
occurred. Subsequently, BloomFuzz logs the sent packet, current fuzzer state,
and error type.

4 Evaluation

In this section, we evaluate BloomFuzz. Section 4.1 introduces the experimental
setup. Section 4.2 presents an analysis of the effectiveness of BloomFuzz in
discovering crashes from real-world Bluetooth devices. Section 4.3 presents the
effectiveness of BloomFuzz in state machine generation. Section 4.4 investigates
how BloomFuzz performs state tracking and packet mutation effectively.

4.1 Experimental Setup

Implementation. BloomFuzz comprises two modules: a preprocessor and
fuzzer. Literally, these modules perform preprocessing (e.g., target-oriented state
machine generation) and fuzzing. BloomFuzz is written in approximately 3,000
lines of Python code, excluding external libraries (e.g., Scapy).

Experimental Environment. We executed BloomFuzz on an Ubuntu 20.04
LTS machine equipped with 16 GB memory, Intel Core i5-7500 CPU @ 3.30 GHz,
and 64 GB SSD. To enable communication with the target device, a Cambridge
Silicon Radio Bluetooth Classic dongle was connected to a Linux machine.

Target Devices. For the experiments, we targeted widely used Bluetooth
devices in the real world and selected devices with various Bluetooth versions
manufactured by different companies (i.e., LG, Google, Samsung, and Xiaomi).
Table 2 summarizes the real-world Bluetooth devices used in our experiments.

122 P. Ahn et al.

Comparison Targets. To evaluate the efficiency of BloomFuzz, we compared
its results with those of existing approaches that aim to fuzz the Bluetooth
L2CAP. Specifically, we selected the following three approaches: BSS [5], BFuzz
[12], and L2Fuzz [13]. Existing approaches that do not target the L2CAP layer
or focus primarily on the controller stack were excluded.

Evaluation Metrics. Because most Bluetooth fuzzing is conducted using a
black-box approach, acquiring the source code or internal log information of the
target devices is challenging. Hence, we define the following four main evaluation
criteria to investigate the effectiveness of BloomFuzz.

1) Crash detection efficiency. This indicates the number of crashes detected
by each fuzzer when sending two million test packets to the target device.

2) State machine generation accuracy. This indicates the accuracy with
which the fuzzer identifies the state machine of the target device. We used
the following two specific metrics: accuracy of pruning missing states (Am)
and accuracy of addressing implemented states (Ai).

Am =
#Identified Missing States

#Total Missing States

Ai =
#Addressed Hidden States + #Identified Normal States

#Total Hidden and Normal States

3) State Tracking Efficiency. This indicates the efficiency with which the
fuzzer tracks the state machine of the target device during fuzzing. If the
states are tracked effectively, then the number of test packets rejected by the
target device decreases. Subsequently, we consider the acceptance ratio of test
packets (At).

At = 1 −
(#Rejected Packets

#Total Sent Packets

)

4) Mutation efficiency. This indicates the efficiency of a fuzzer in performing
packet mutations. We define it as the probability that a test packet sent
when accepted by the target device is malformed. Mutation efficiency (Me)
is evaluated as follows.

Me =
(#Malformed Packets

#Total Sent Packets

)
× At

4.2 Experiment on Crash Detection

Methodology. We applied BloomFuzz and three selected comparison targets
(BSS, BFuzz, and L2Fuzz) to the seven target devices to assess the effectiveness
of the fuzzers in crash detection. Here, we evaluate the effectiveness of the four
fuzzers by examining the number of discovered crashes (i.e., potential vulnera-
bilities) when sending two million test packets to the target device.

BloomFuzz 123

Table 3. Crash detection results of each fuzzer. BloomFuzz was able to discover the
highest number of crashes, except in the cases of D5 and D7.

Target #Detected crashes in each fuzzer

BloomFuzz L2Fuzz BFuzz BSS

D1 17 0 3 0

D2 6 0 0 0

D3 8 0 8 0

D4 1 0 0 0

D5 0 0 12 0

D6 14 4 0 0

D7 10 26 0 0

Total 56 30 23 0

Results. Table 3 summarizes the experimental results. Notably, we confirmed
that BloomFuzz discovered the highest number of crashes across five (D1 - D4,
and D6) out of seven devices.

In the case of D5, only BFuzz could detect crashes. We observed that most
of the packets leading to crashes had values assigned to the Code field of the
L2CAP packet that were not defined in the specification. Thus, BloomFuzz,
which did not consider this field mutable, failed to detect crashes. However,
BFuzz has a high probability of generating test packets that are rejected by the
target device owing to randomly mutating all fields (see Sect. 4.4). In the case
of D7, L2Fuzz was able to detect the highest number of crashes. When L2Fuzz
discovered a crash, it tended to focus intensively on that state, generating many
similar crash-inducing packets. Consequently, it could trigger many crashes in
D7. Last, BSS did not trigger any crashes across all devices.

We reported two vulnerabilities that were reproducible among the detected
crashes to the respective vendors, i.e., Galaxy Buds+ (D6) of Samsung and
Redmi Buds 3 Pro (D7) of Xiaomi (see Appendix A). Xiaomi confirmed that
the crash is indeed a vulnerability. Samsung confirmed and provided the opinion
that vulnerabilities can be prevented by configuring internal device options.1

4.3 Effectiveness of State Machine Generation

Methodology. We evaluated how precisely fuzzers generate state machines
by comparing the state machine implemented on the target device with the one
generated by each fuzzer. Here, we considered the Pixel 3 (D4 in Table 2) running
Android 12 to determine the ground truth of the implemented state machine.
This is because, unlike other operating systems or firmware, the source code of
Android 12 is publicly available, hence we can examine the code and identify the

1 Since the vulnerabilities have not been patched yet, detailed explanations are omit-
ted. We plan to introduce details after the completion of the patching process.

124 P. Ahn et al.

Fig. 6. Illustration of state machine generation effectiveness.

implemented state machine. We verified that the state machine of D4 comprises
nine states (three normal and six hidden states), with 16 missing states.

Results. Figure 6 shows the experimental results. First, only BloomFuzz and
L2Fuzz could identify all the implemented normal states. In addition,
BloomFuzz successfully addressed two hidden states. Among the total six hid-
den states discovered on the target device, only these two were traceable: three
hidden states were accessible only when the target device was a central, and the
remaining one could only be entered through the controller stack.

Unlike existing fuzzers, BloomFuzz eliminated the detected 14 missing
states (88%). In fact, BloomFuzz recognized all missing states and excluded
them from the generation of the target-oriented state machine, but during the
fuzzing process, BloomFuzz attempted to access these two missing states unin-
tentionally (e.g., internal operation of the Controller stack). Therefore, we deter-
mined that the two missing states were not completely removed by BloomFuzz.
Nonetheless, BloomFuzz can generate a target-oriented state machine very
close to the implemented state machine by using the concept of clusters.

4.4 Efficiency of State Tracking and Packet Mutation

Methodology. Finally, we evaluated the fuzzers used in the experiments to
assess how efficiently they (1) track the state machine of the target device and
(2) perform packet mutation. Each fuzzer sent two million packets to the target
device; because the count verified in Wireshark differed from the values provided
by the fuzzers, the number of transmitted packets observed in the results could
be either less or more than two million. Note that the completeness of the state
machine directly affects the evaluation of state tracking and packet mutation
effectiveness. Hence, to illustrate the correlation between these factors, we focus
on the same D4 device that was previously employed in Sect. 4.3.

BloomFuzz 125

Table 4. Measurement results of packet acceptance ratio and mutation efficiency.

Fuzzers #Total Sent Pkts #Rejected Pkts #Malformed Pkts At Me

BloomFuzz 1,459,515 341,858 923,468 77% 49%

L2Fuzz 926,768 511,070 585,616 45% 28%

BFuzz 2,002,862 1,457,943 99,745 27% 1%

BSS 1,202,518 908,986 389,763 24% 8%

Results. Table 4 summarizes the measurement results. First, both BSS and
BFuzz exhibited low packet acceptance ratios (i.e., less than 30%) as they failed
to (1) address normal and hidden states (see Sect. 4.3) and (2) track the current
state of the target device. Although L2Fuzz addressed this to some extent,
it hardly achieved a packet acceptance ratio of 45%. In contrast, BloomFuzz,
which addresses hidden states using clusters, demonstrated a significantly higher
ratio of 77%, thereby outperforming other fuzzers.

Considering mutation efficiency, BFuzz and BSS based on simple randomness
showed very low mutation efficiency (less than 10%). L2Fuzz, by focusing only
on mutable L2CAP packet fields, achieved a moderate level of efficiency (28%).
In contrast, BloomFuzz not only focused on mutable fields but also (1) utilized
AFL operators, (2) considered edge cases, and even (3) accounted for garbage
fields. As a result, it significantly increased the efficiency of packet mutation
compared to existing L2CAP fuzzers, by showing the mutation efficiency of 49%.

5 Discussion

Limitations. BloomFuzz makes several assumptions that limit its application.
First, when removing missing states, if unintended transitions are included, miss-
ing states may not be eliminated. We plan to identify and remove transitions
that were not intended by the fuzzer. Next, our target-oriented state machine
is constructed based on the specification. Unless updated to reflect newly added
L2CAP commands, BloomFuzz cannot cover them. This can be addressed by
defining signaling packets containing new L2CAP commands as new state tran-
sitions and incorporating them into the state machine.

Some limitations commonly exist with Bluetooth fuzzers. Most Bluetooth
fuzzers can only cover states that can be reached when the target device operates
as a peripheral. We are considering methods to change the role of the target
device during fuzzing. Finally, while there are reported crashes that have been
reproduced, not every detected crash may always be reproducible. We will strive
for the root cause analysis and reproduction of all discovered crashes.

Applicability of BloomFuzz. BloomFuzz was implemented based on Blue-
tooth Specification v5.2, but can be used regardless of the target Bluetooth
version, because Bluetooth v5.2 encompasses all states present in each version.
Furthermore, the idea of BloomFuzz’s state machine generation can be applied
to protocols defining state machines in the specification. Thus, we anticipate that

126 P. Ahn et al.

enhanced stateful fuzzing will be achievable through the generation of a more
effective state machine in various protocols.

6 Related Works

Bluetooth Fuzzing. Several approaches have been devised to identify Blue-
tooth vulnerabilities through fuzzing. Defensics [20] aims to uncover Bluetooth
vulnerabilities but requires a pairing process. BSS [5] and BFuzz [12] can be
used to detect Bluetooth vulnerabilities, but they are limited to generating valid
malformed packets because they fail to effectively consider the Bluetooth states.
L2Fuzz [13] identifies L2CAP vulnerabilities via core-field mutation. However,
it (1) constructs the state machine based solely on the Bluetooth specification
and (2) assumes that the state of the target device is the same as that of the
fuzzer. Therefore, the effectiveness of fuzzing is compromised (see Sect. 4).

Several approaches (e.g., [7,8,15]) aim to discover Bluetooth vulnerabilities
through fuzzing but their main target is a different layer (i.e., not the L2CAP).
As these approaches were developed by focusing on their respective target layers
or stacks, applying them to detect vulnerabilities in L2CAP is challenging.

General Bluetooth Vulnerability Discovery. Several approaches have been
devised to discover Bluetooth vulnerabilities without fuzzing (e.g., [3,6,16,17,
27]). However, they require considerable manual operations, such as firmware
patching, reverse engineering, or manual examination of Bluetooth specifications.
Therefore, their application to diverse Bluetooth devices is limited.

Other Protocol Vulnerability Detection with State Machine Inference.
Several approaches have been suggested to uncover vulnerabilities in diverse
protocols by inferring the state machine of the target device (e.g., [9,14,18]).
However, these techniques do not target the Bluetooth protocol, and applying
them directly to L2CAP would require extensive modification of the original
technology (e.g., modify existing technology to align with the Bluetooth stack).

General Vulnerability Detection Techniques. General vulnerability detec-
tion approaches, including source code-based (e.g., [11,22–24,26]) and binary-
based (e.g., [10,25,28]) approaches, can be applied to Bluetooth software. How-
ever, due to most Bluetooth devices being black boxes, direct application of
source code-based methods is challenging. Binary-based approaches face diffi-
culties in discovering Bluetooth vulnerabilities while specifically targeting Blue-
tooth functionality, making them unsuitable for our goals.

7 Conclusion

Vulnerabilities present in Bluetooth devices could potentially pose a threat to our
daily lives. In response, we proposed BloomFuzz, a stateful fuzzer for the Blue-
tooth L2CAP. By leveraging the concept of state clusters, BloomFuzz infers

BloomFuzz 127

the state machine implemented in the target device with high accuracy and
enhances fuzzing efficiency. BloomFuzz exhibited significantly higher fuzzing
efficiency compared to existing L2CAP fuzzers, detecting 56 potential vulnera-
bilities in real-world Bluetooth devices. With BloomFuzz, the security of Blue-
tooth devices can be strengthened, consequently, rendering a secure wireless
ecosystem.

Acknowledgment. We appreciate the anonymous reviewers for their valuable com-
ments to improve the quality of the paper. Additionally, we appreciate Haram Park and
Choongin Lee for their valuable comments. This work was supported by ICT Creative
Consilience Program through the Institute of Information & Communications Tech-
nology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT)
(No.2022-0-00277, Development of SBOM Technologies for Securing Software Supply
Chains, No.2022-0-01198, Convergence Security Core Talent Training Business (Korea
University), and IITP-2024-2020-0-01819, ICT Creative Consilience program).

A Discovered Crashes

BloomFuzz could discover 56 potential vulnerabilities (see Table 5). Among
them, two potential vulnerabilities (in D6 and D7; see Table 2) were reported
and confirmed by each vendor. Next, the eight potential vulnerabilities were
patched by the vendors while we were analyzing the root causes. Eighteen crashes
occurred intermittently, while the remaining 28 crashes are still under analysis.
We will report to the vendor as soon as we complete the analysis.

Table 5. Classification results of discovered potential vulnerabilities.

Classification Number Devices

Confirmed 2 D6, D7

Already patched 8 D3

Intermittently 18 D2, D4

Under investigation 28 D1, D5, D6, D7

B Efficiency in Addressing Missing and Hidden States

Figure 7 shows state machine generation effectiveness and packet acceptance
ratio. The At demonstrates the effectiveness of missing state pruning (see
Sect. 4.1). The better the missing state is removed, the higher the probability
that the packet will not be rejected. Note that BloomFuzz exhibits the highest
At. Additionally, Ai indicates how well missing and hidden states are handled.
While we cannot directly determine whether vulnerabilities were found in the
hidden state, we can indirectly infer that by effectively managing missing and
hidden states. As a result, BloomFuzz can discover more crashes than other
fuzzers.

128 P. Ahn et al.

Fig. 7. State machine generation effectiveness and packet acceptance ratio.

References

1. Android Build Coastguard Worker, BlueDroid 12.1.0 r19 (2023). https://android.
googlesource.com/platform/system/bt/+/refs/tags/android-platform-12.1.0 r19.
Accessed 4 Jan 2024

2. Antonioli, D., Tippenhauer, N.O., Rasmussen, K.: BIAS: bluetooth impersonation
attacks. In: 2020 IEEE Symposium on Security and Privacy (SP), pp. 549–562
(2020)

3. Antonioli, D., Tippenhauer, N.O., Rasmussen, K.: Key negotiation downgrade
attacks on bluetooth and bluetooth low energy. ACM Trans. Priv. Secur. (TOPS)
23(3), 1–28 (2020)

4. Antonioli, D., Tippenhauer, N.O., Rasmussen, K.B.: The KNOB is broken: exploit-
ing low entropy in the encryption key negotiation of bluetooth BR/EDR. In: 28th
USENIX Security Symposium (USENIX Security 2019), pp. 1047–1061 (2019)

5. Betouin, P.: [Infratech - vulnérabilité] Nouvelle version 0.8 de Bluetooth
Stack Smasher (2015). http://www.secuobs.com/news/15022006-bss 0 8.shtml.
Accessed 4 Jan 2024

6. Claverie, T., Esteves, J.L.: BlueMirror: reflections on bluetooth pairing and pro-
visioning protocols. In: 2021 IEEE Security and Privacy Workshops (SPW), pp.
339–351 (2021)

7. Garbelini, M.E., Bedi, V., Chattopadhyay, S., Sun, S., Kurniawan, E.: BRAK-
TOOTH: causing havoc on bluetooth link manager via directed fuzzing. In: 31st
USENIX Security Symposium (USENIX Security 2022), pp. 1025–1042 (2022)

8. Garbelini, M.E., Wang, C., Chattopadhyay, S., Sumei, S., Kurniawan, E.: Sweyn-
Tooth: unleashing mayhem over bluetooth low energy. In: 2020 USENIX Annual
Technical Conference (USENIX ATC 2020), pp. 911–925 (2020)

9. Gascon, H., Wressnegger, C., Yamaguchi, F., Arp, D., Rieck, K.: Pulsar: stateful
black-box fuzzing of proprietary network protocols. In: Thuraisingham, B., Wang,
X.F., Yegneswaran, V. (eds.) SecureComm 2015. LNICST, vol. 164, pp. 330–347.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-28865-9 18

10. Han, H., Kyea, J., Jin, Y., Kang, J., Pak, B., Yun, I.: QueryX: symbolic query on
decompiled code for finding bugs in COTS binaries. In: 2023 IEEE Symposium on
Security and Privacy (SP), pp. 3279–312795 (2023)

11. Kim, S., Woo, S., Lee, H., Oh, H.: VUDDY: a scalable approach for vulnerable
code clone discovery. In: 2017 IEEE Symposium on Security and Privacy (SP), pp.
595–614 (2017)

12. Kim, S., Woo, S., Lee, H., Oh, H.: Poster: IoTcube: an automated analysis platform
for finding security vulnerabilities. In: Proceedings of the 38th IEEE Symposium
on Poster presented at Security and Privacy (2017)

https://android.googlesource.com/platform/system/bt/+/refs/tags/android-platform-12.1.0_r19
https://android.googlesource.com/platform/system/bt/+/refs/tags/android-platform-12.1.0_r19
http://www.secuobs.com/news/15022006-bss_0_8.shtml
https://doi.org/10.1007/978-3-319-28865-9_18

BloomFuzz 129

13. Park, H., Nkuba, C.K., Woo, S., Lee, H.: L2Fuzz: discovering bluetooth L2CAP
vulnerabilities using stateful fuzz testing. In: 2022 52nd Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks (DSN), pp. 343–354
(2022)

14. Rasoamanana, A.T., Levillain, O., Debar, H.: Towards a systematic and automatic
use of state machine inference to uncover security flaws and fingerprint TLS stacks.
In: Atluri, V., Di Pietro, R., Jensen, C.D., Meng, W. (eds.) ESORICS 202. LNCS,
vol. 13556, pp. 637–657. Springer, Cham (2022). https://doi.org/10.1007/978-3-
031-17143-7 31

15. Ruge, J., Classen, J., Gringoli, F., Hollick, M.: Frankenstein: advanced wireless
fuzzing to exploit new bluetooth escalation targets. In: 29th USENIX Security
Symposium (USENIX Security 2020), pp. 19–36

16. Seri, B., Vishnepolsky, G., Zusman, D.: BLEEDINGBIT: the hidden attack surface
within BLE chips (2019)

17. Seri, B., Vishnepolsky, G.: BlueBorne: The dangers of Bluetooth implementations:
Unveiling zero day vulnerabilities and security flaws in modern Bluetooth stacks
(2017). https://www.armis.com/research/blueborne/. Accessed 3 Jan 2024

18. Shu, Z., Yan, G.: IoTInfer: automated blackbox fuzz testing of IoT network pro-
tocols guided by finite state machine inference. IEEE Internet Things J. 9(22),
22737–22751 (2022)

19. SIG, B.: Bluetooth Core Specification 5.2 (2019). https://www.bluetooth.com/
specifications/specs/

20. Synopsys: Defensics Fuzz Testing. https://www.synopsys.com/software-integrity/
security-testing/fuzz-testing.html. Accessed 4 Jan 2024

21. von Tschirschnitz, M., Peuckert, L., Franzen, F., Grossklags, J.: Method confusion
attack on bluetooth pairing. In: 2021 IEEE Symposium on Security and Privacy
(SP), pp. 1332–1347 (2021)

22. Woo, S., Choi, E., Lee, H., Oh, H.: V1SCAN: discovering 1-day vulnerabilities
in reused C/C++ open-source software components using code classification tech-
niques. In: 32nd USENIX Security Symposium (USENIX Security 2023), pp. 6541–
6556 (2023)

23. Woo, S., Hong, H., Choi, E., Lee, H.: MOVERY: a precise approach for modified
vulnerable code clone discovery from modified open-source software components.
In: 31st USENIX Security Symposium (USENIX Security 2022), pp. 3037–3053
(2022)

24. Woo, S., Park, S., Kim, S., Lee, H., Oh, H.: CENTRIS: a precise and scalable
approach for identifying modified open-source software reuse. In: 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE), pp. 860–872 (2021)

25. Wu, J., et al.: OSSFP: precise and scalable C/C++ third-party library detection
using fingerprinting functions. In: 2023 IEEE/ACM 45th International Conference
on Software Engineering (ICSE), pp. 270–282

26. Xiao, Y., et al.: MVP: Detecting vulnerabilities using patch-enhanced vulnerability
signatures. In: 29th USENIX Security Symposium (2020), pp. 1165–1182 (2020)

27. Xu, F., Diao, W., Li, Z., Chen, J., Zhang, K.: BadBluetooth: breaking android
security mechanisms via malicious bluetooth peripherals. In: NDSS (2019)

28. Yuan, Z., et al.: B2SFinder: detecting open-source software reuse in COTS soft-
ware. In: 2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pp. 1038–1049 (2019)

29. Zalewski, M.: American fuzzy lop (2021). https://github.com/google/AFL.
Accessed 3 Jan 2024

https://doi.org/10.1007/978-3-031-17143-7_31
https://doi.org/10.1007/978-3-031-17143-7_31
https://www.armis.com/research/blueborne/
https://www.bluetooth.com/specifications/specs/
https://www.bluetooth.com/specifications/specs/
https://www.synopsys.com/software-integrity/security-testing/fuzz-testing.html
https://www.synopsys.com/software-integrity/security-testing/fuzz-testing.html
https://github.com/google/AFL

	BloomFuzz: Unveiling Bluetooth L2CAP Vulnerabilities via State Cluster Fuzzing with Target-Oriented State Machines
	1 Introduction
	2 Motivation
	2.1 Background
	2.2 Technical Challenges

	3 Design of BloomFuzz
	3.1 State Machine Construction (P1)
	3.2 Cluster-Based Packet Mutation (P2)
	3.3 Crash Detection (P3)

	4 Evaluation
	4.1 Experimental Setup
	4.2 Experiment on Crash Detection
	4.3 Effectiveness of State Machine Generation
	4.4 Efficiency of State Tracking and Packet Mutation

	5 Discussion
	6 Related Works
	7 Conclusion
	A Discovered Crashes
	B Efficiency in Addressing Missing and Hidden States
	References

