EP 4 033 380 B1

(19)

Patent Office

Européisches
Patentamt
0’ European

st (11) EP 4 033 380 B1
(12) EUROPEAN PATENT SPECIFICATION
(45) Date of publication and mention (51) International Patent Classification (IPC):
of the grant of the patent: GO6F 21/10(2013.07) GOG6F 8/71 (2018.01)
16.04.2025 Bulletin 2025/16 GOGF 8/75(2018.2) GOGF 8/36 (2018.97)
(21) Application number: 21202849.2 (52) Cooperative Patent Classification (CPC):
GO6F 21/10; GO6F 8/36; GO6F 8/751
(22) Date of filing: 15.10.2021
(54) METHOD FOR IDENTIFYING OPEN-SOURCE SOFTWARE COMPONENTS AT THE
SOURCE-CODE LEVEL
VERFAHREN ZUR IDENTIFIZIERUNG VON OPEN-SOURCE-SOFTWARE-KOMPONENTEN AUF
QUELLCODEEBENE
PROCEDE D'IDENTIFICATION DE COMPOSANTS LOGICIELS OPEN-SOURCE AU NIVEAU DU
CODE SOURCE
(84) Designated Contracting States: ¢ WOO, Seunghoon
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Seoul (KR)
GRHRHUIEISITLILT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR (74) Representative: Balder IP Law, S.L.
Paseo de la Castellana 93
(30) Priority: 26.01.2021 KR 20210010585 5a planta
28046 Madrid (ES)
(43) Date of publication of application:
27.07.2022 Bulletin 2022/30 (56) References cited:
US-A1-2019 205125 US-A1- 2020 410 095
(73) Proprietor: Korea University Research and
Business Foundation * TAKASHI ISHIO ET AL: "Software ingredients”,
Seoul 02841 (KR) MINING SOFTWARE REPOSITORIES, ACM, 2
PENN PLAZA, SUITE 701 NEW YORK NY
(72) Inventors: 10121-0701 USA, 14 May 2016 (2016-05-14),
* LEE, Heejo pages 339 - 350, XP058259286, ISBN:
Gyeonggi-do (KR) 978-1-4503-4186-8, DOI: 10.1145/
2901739.2901773

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent
Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the
Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been
paid. (Art. 99(1) European Patent Convention).

Processed by Luminess, 75001 PARIS (FR)

10

15

20

25

30

35

40

45

50

55

EP 4 033 380 B1
Description

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to and the benefit of Korean Patent Application No. 10-2021-0010585 filed in the
Korean Intellectual Property Office on January 26, 2021.

TECHNICAL FIELD

[0002] The presentdisclosure relates to detection of an open-source software component reused by specific software,
and particularly, to a method for extensively and accurately detecting even a reuse pattern in addition to an open-source
software list which is being reused.

BACKGROUND ART

[0003] Open source software (OSS) may mean software which can be reused, modified, and redistributed by anyone
without a particular limit if a license is observed while a source code is opened. Developers may not implement detailed
functions required for developing the software one by one, but shorten software development time and cost through reuse
of an open source software code which is previously implemented.

[0004] In spite of such an advantage, reuse of indiscriminate unmanaged open source software may cause various
problems. Representatively, a problem of propagating a weak point while vulnerable open source software is used and a
license violation problem due to reuse of open source software which does not follow a license policy may occur.
[0005] When the open source software componentwhich is being reused may be clearly detected, the problems may be
prevented. However, the reuse of the modified open source software makes accurate component detection into a
challenging problem. The developers frequently reuse only some source codes or modify and reuse a code and a structure
in the process of reusing the open source software. If itis confirmed that there are some common source codes between
target software and specific open source software, it is not easy to distinguish whether some open source software is
actually reused (correct detection) or whether only a sub-component in the open source software is reused (in this case,
determining that all open source software is reused is false detection).

[0006] US2019/0205125A1 discloses methods, systems, and apparatus for determining the provenance of source
code.

[0007] Takashi Ishio et al. disclose in "Software ingredients: Detection of Third-party Component Reuse in Java
Software Release", IEEE/ACM 13th Working Conference on Mining Software Repositories, 2016, a method to auto-
matically select a set of jar files thatis the most likely origin of components reused in a software product. US2020410095A1
constitutes another piece of relevant prior art which has been used to draw up the European search report and to examine
the European patent application.

[0008] The number of open source software and a code size of each open source software which increase steadily can
make the detection of the open source software component within a reasonable time be more difficult.

[0009] Technology that detects the open source software component at a binary level, "ldentifying Open-Source
License Violation and 1-day Security Risk at Large Scale", was announced in ACM Conference on Computer and
Communications Security (CCS) in 2017, but the corresponding technology does not sufficiently consider the modified
open source software component and may be insufficient even in terms of expandability in detecting the open source
software component in large-sized software.

[0010] Accordingly, a method is required, which is to detect the open source software component accurately and
expansively while considering reuse of the modified open source software.

SUMMARY OF THE INVENTION

[0011] The presentdisclosureis contrived in response to the above-described background art, and has been made inan
effort to provide a method for accurately detecting an open source software component list which is being used by specific
software and a reuse pattern thereof from a large-scale open source software set.

[0012] However, technical objects of the present disclosure are not restricted to the technical object mentioned as
above. Other unmentioned technical objects will be apparently appreciated by those skilled in the art by referencing to the
following description.

[0013] The described embodiments are to be considered only as illustrative and not restrictive. The scope of the
invention is defined by the appended claims, the dependent claims define further embodiments of the invention.
[0014] In order to solve the problem, an exemplary embodiment of the present disclosure provides a method for
identifying open source software (OSS) components using a processor of a computing device. The method for identifying

10

15

20

25

30

35

40

45

50

55

EP 4 033 380 B1

open source software (OSS) components may include: constructing a component database by performing redundancy
elimination for each of a plurality of open source software; and identifying a component of target software by using the
component database.
[0015] The constructing of the component database by performing the redundancy elimination for each of the plurality of
open source software may include when performing the redundancy elimination for first open source software among the
plurality of open source software, recognizing atleast one function which appears in each of at least one version of the first
open source software, and setting a hash value of each of the at least one function as a key and setting at least one version
in which each of the at least one function appears to a value for the key, and storing the key value in a first dictionary data
structure for the first open source software.
[0016] The first dictionary data structure may be distinguished into different groups according to the number of versions
in which the function appears.
[0017] The identifying of the component of the target software by using the component database may include
segmenting a source code included in each of the plurality of open source software into an application code part and
a borrowed code part, and comparing a target source code included in the target software and the application code part
included in each of the plurality of open source software to extract at least one second open source software used when
preparing the target software among the plurality of open source software.
[0018] The segmenting of the source code included in each of the plurality of open source software into the application
code part and the borrowed code part may include recognizing one or more first functions which appear in a first source
code included in third open source software to be subjected to the code segmentation among the plurality of open source
software, selecting fourth open source software to be analyzed through a comparison with the third open source software
among the plurality of open source software, recognizing one or more second functions which appear in a second source
code included in the fourth open source software, comparing the one or more first functions and the one or more second
functions and extracting one or more common functions recognized to be the same, recognizing one or more third
functions which appear earlier in the fourth open source software among the one or more common functions, and removing
the one or more third functions from a second dictionary data structure related to the third open source software in the
component database.
[0019] The removing ofthe one or more third functions from the second dictionary data structure related to the third open
source software in the component database may include, when a value calculated based on a first number of the one or
more second functions and a second number of the one or more third functions is equal to or more than a predetermined
value, removing the one or more third functions from the one or more first functions included in the second dictionary data
structure.
[0020] The comparing of the target source code included in the target software and the application code partincluded in
each of the plurality of open source software to extract at least one second open source software used when preparing the
target software among the plurality of open source software may include recognizing each code similarity value between
each of the plurality of open source software and the target software based on a third number of functions commonly
included in the function included in the target source code and the function of the application code part of each of the
plurality of open source software subjected to the code segmentation and a fourth number of functions of the application
code part of each of the plurality of open source software subjected to the code segmentation, and extracting at least one
second open source software in which the code similarity value is equal to or more than a predetermined value among the
plurality of open source software subjected to the coding segmenting .

& = %T%if;f%
[0021] The code similarity value may be determined based on a first equation, the first equation may be ,
and the ® may represent the code similarity value, the T may represent the function of the target software, and the S may
represent the function of the application code part of the plurality of open source software subjected to the code
segmentation.
[0022] Another exemplary embodiment of the present disclosure provides a device for identifying open source software
components may include: a processor performing redundancy elimination for each of a plurality of open source software;
and a component database unit storing a result of performing the redundancy elimination, in which the processor may
identify a component of target software by using the component database unit.
[0023] The processor may recognize at least one function which appears in each of atleast one version of the first open
source software, and set a hash value of each of the atleast one function as akey and set atleast one version in which each
of the at least one function appears to a value for the key, and store the key value in the component database unit as a first
dictionary data structure for the first open source software when performing the redundancy elimination for first open
source software among the plurality of open source software.
[0024] The first dictionary data structure may be distinguished into different groups according to the number of versions
in which the function appears.
[0025] The processor may segment a source code included in each of the plurality of open source software into an

10

15

20

25

30

35

40

45

50

55

EP 4 033 380 B1

application code part and a borrowed code part, and compares the target source code included in the target software and
the application code part included in each of the plurality of open source software to extract at least one second open
source software used when preparing the target software among the plurality of open source software.

[0026] The processor may recognize one or more first functions which appearin afirst source code included in third open
source software to be subjected to the code segmentation among the plurality of open source software, select fourth open
source software to be analyzed through a comparison with the third open source software among the plurality of open
source software, recognize one or more second functions which appear in a second source code included in the fourth
open source software, compare the one or more first functions and the one or more second functions and extract one or
more common functions recognized to be the same, recognize one or more third functions which appear earlier in the
fourth open source software among the one or more common functions, and remove the one or more third functions from a
second dictionary data structure related to the third open source software in the component database unit.

[0027] The processor may, when a value calculated based on a first number of the one or more second functions and a
second number of the one or more third functions is equal to or more than a predetermined value, removes the one or more
third functions from the one or more first functions included in the second dictionary data structure.

[0028] The processor may recognize each code similarity value between each of the plurality of open source software
and the target software based on a third number of functions commonly included in the function included in the target
source code and the function of the application code part of each of the plurality of open source software subjected to the
code segmentation and a fourth number of functions of the application code part of each of the plurality of open source
software subjected to the code segmentation, and extract at least one second open source software in which the code
similarity value is equal to or more than a predetermined value among the plurality of open source software subjected to the
code segmentation.

@ = Wﬁ 3}
[0029] The code similarity value may be determined based on a first equation, the first equation may be It ,
and the ® may represent the code similarity value, the T may represent the function of the target software, and the S may
represent the function of the application code part of the plurality of open source software subjected to the code
segmentation.
[0030] Technical solving means which can be obtained in the present disclosure are not limited to the aforementioned
solving means and other unmentioned solving means will be clearly understood by those skilled in the art from the following
description.
[0031] According to some exemplary embodiments of the present disclosure, security enhancement of software and
software code management including whether there is a weak point and whether a license is violated can be performed.
[0032] Effects which can be obtained in the present disclosure are not limited to the aforementioned effects and other
unmentioned effects will be clearly understood by those skilled in the art from the following description.

BRIEF DESCRIPTION OF THE DRAWINGS

[0033] Various aspects are now described with reference to the drawings and like reference numerals are generally
used to designate like elements. In the following exemplary embodiments, for the purpose of description, multiple specific
detailed matters are presented to provide general understanding of one or more aspects. However, it will be apparent that
the aspect(s) can be executed without the specific detailed matters. In other examples, known structures and apparatuses
are illustrated in a block diagram form in order to facilitate description of the one or more aspects.

FIG. 1is ablock diagram for describing an example of a computing device according to some exemplary embodiments
of the present disclosure.

FIG. 2 is a flowchart for describing an example of a method for identifying a component of open source software by a
computing device according to some exemplary embodiments of the present disclosure.

FIG. 3 is a flowchart for describing an example of a method for constructing a component database by a computing
device according to some exemplary embodiments of the present disclosure.

FIG. 4 is a diagram for describing a dictionary data structure according to some exemplary embodiments of the
present disclosure.

FIG. 5 is a flowchart for describing an example of a method for identifying a component of target software by a
computing device according to some exemplary embodiments of the present disclosure.

FIG. 6 is a flowchart for describing an example of a method for performing code segmentation by a computing device
according to some exemplary embodiments of the present disclosure.

FIG. 7 is a flowchart for describing an example of a method for extracting at least one second open source software by
using a code similarity value by a computing device according to some exemplary embodiments of the present
disclosure.

10

15

20

25

30

35

40

45

50

55

EP 4 033 380 B1

FIG. 8is adiagram for comparing the presentdisclosure and related art according to some exemplary embodiments of
the present disclosure.

FIG. 9 is a general schematic view of an exemplary computing environment in which exemplary embodiments of the
present disclosure may be implemented.

FIG. 10is adiagram for comparing the presentinvention and related art according to some exemplary embodiments of
the present disclosure.

DETAILED DESCRIPTION

[0034] Various exemplary embodiments and/or aspects will be now disclosed with reference to drawings. In the
following description, for the purpose of a description, multiple detailed matters will be disclosed in order to help
comprehensive appreciation of one or more aspects. However, those skilled in the art of the present disclosure will
recognize that the aspect(s) can be executed without the detailed matters. In the following disclosure and the accom-
panying drawings, specific exemplary aspects of one or more aspects will be described in detail. However, the aspects are
exemplary and some of various methods in principles of various aspects may be used and the descriptions are intended to
include all of the aspects and equivalents thereof. Specifically, in "embodiment”, "example”, "aspect”, "illustration", and the
like used in the specification, it may not be construed that a predetermined aspect or design which is described is more
excellent or advantageous than other aspects or designs.

[0035] Hereinafter, like reference numerals refer to like or similar elements regardless of reference numerals and a
duplicated description thereof will be omitted. Further, the accompanying drawings are only for easily understanding the
exemplary embodiment disclosed in this specification.

[0036] Although the terms "first", "second”, and the like are used for describing various elements or components, these
elements or components are not confined by these terms, of course. These terms are merely used for distinguishing one
element or component from another element or component. Therefore, a first element or component to be mentioned
below may be a second element or component.

[0037] Unless otherwise defined, all terms (including technical and scientific terms) used in the present specification
may be used as the meaning which may be commonly understood by the person with ordinary skill in the art, to which the
present disclosure pertains. Terms defined in commonly used dictionaries should not be interpreted in an idealized or
excessive sense unless expressly and specifically defined.

[0038] Theterm"or"isintended to mean notexclusive "or"butinclusive "or". Thatis, when not separately specified or not
clearin terms of a context, a sentence "X uses A or B" is intended to mean one of the natural inclusive substitutions. Thatis,
the sentence "X uses A or B" may be applied to any of the case where X uses A, the case where X uses B, or the case where
X uses both A and B. Further, it should be understood that the term "and/or" used in this specification designates and
includes all available combinations of one or more items among enumerated related items.

[0039] The word "comprises" and/or "comprising" means that the corresponding feature and/or component is present,
butit should be appreciated that presence or addition of one or more other features, components, and/or a group thereof is
not excluded. Further, when not separately specified oritis not clear in terms of the context that a singular formis indicated,
it should be construed that the singular form generally means "one or more" in this specification and the claims.
[0040] The terms "information" and "data" used in the specification may also be often used to be exchanged with each
other.

[0041] It should be understood that, when it is described that a component is "connected to" or "accesses" another
component, the component may be directly connected to or access the other component or a third component may be
present therebetween. In contrast, when it is described that a component is "directly connected to" or "directly accesses"
another component, it is understood that no element is present between the element and another element.

[0042] Suffixes "module" and "unit" for components used in the following description are given or mixed in consideration
of easy preparation of the present disclosure only and do not have their own distinguished meanings or roles.

[0043] The objects and effects of the present disclosure, and technical constitutions of accomplishing these will become
obvious with reference to exemplary embodiments to be described below in detail along with the accompanying drawings.
In addition, terms to be described below as terms which are defined in consideration of functions in the present disclosure
may vary depending on the intention or a usual practice of a user or an operator.

[0044] However, the present disclosure is not limited to exemplary embodiments disclosed below but may be
implemented in various different forms. However, the exemplary embodiments are provided to make the present
disclosure be complete and completely announce the scope of the present disclosure to those skilled in the art to which
the present disclosure belongs and the present disclosure is just defined by the scope of the claims. Accordingly, the terms
need to be defined based on contents throughout this specification.

[0045] In the present disclosure, a processor of a computing device performs redundancy elimination for each of a
plurality of open source software (OSS) to construct a component database. In addition, the processor may identify a
component of target software to identify a component by using the constructed component database. Hereinafter, a

10

15

20

25

30

35

40

45

50

55

EP 4 033 380 B1

method for identifying open source software components according to the present disclosure will be described.

[0046] FIG. 1 is a block diagram for describing an example of a computing device according to some exemplary
embodiments of the present disclosure.

[0047] Referringto FIG. 1, the computing device 100 may include a processor 110 and a component database unit 120.
However, components described above are not required in implementing the computing device 100, so the computing
device 100 may have components more or less than components listed above.

[0048] The computing device 100 may include a predetermined type computer system or computer device such as a
microprocessor, a main frame computer, a digital processor, a portable device, or a device controller, for example.
[0049] Meanwhile, the processor 110 may generally process an overall operation of the computing device 100. The
processor 110 processes a signal, data, information, and the like input or output through the components of the computing
device ordrives the application program stored in the component database unit 120 to provide or process information or a
function appropriate for the user.

[0050] As an example, the processor 110 may perform the redundancy elimination for each of the plurality of open
source software. In addition, the processor 110 may store the component database constructed by performing the
redundancy elimination in the component database unit 120. Here, the redundancy elimination may be eliminating
redundancy of functions commonly included in the plurality of open source software. In addition, the processor 110 may
identify the component of target software by using the constructed component database. Here, the target software may be
open source software to identify the component. Hereinafter, contents regarding an operation performed by the processor
110 according to the present disclosure will be described through FIGS. 2 to 8.

[0051] Meanwhile, the component database unit 120 may include a memory and/or a persistent storage. The memory
may include atleast one type of storage medium of a flash memory type storage medium, a hard disk type storage medium,
a multimedia card micro type storage medium, a card type memory (for example, an SD or XD memory, or the like), a
random access memory (RAM), a static random access memory (SRAM), a read-only memory (ROM), an electrically
erasable programmable read-only memory (EEPROM), a programmable read-only memory (PROM), a magnetic
memory, a magnetic disk, and an optical disk. However, the present disclosure is not limited thereto.

[0052] FIG.2is aflowchart for describing an example of a method for identifying a component of open source software
by a computing device according to some exemplary embodiments of the present disclosure.

[0053] Referring to FIG. 2, the processor 110 of the computing device 100 may construct a component database by
performing redundancy elimination for each of a plurality of open source software (S100).

[0054] As an example, at least one open source software of the plurality of open source software stored in the
component database unit 120 may exist in plural for each version. In this case, when the version of the open source
software is updated, a source code may not be newly prepared every time. Accordingly, a common code part may exist in
each version of the open source software. The common code parts may be duplicated and used for matching when the
processor110 detects the component of the open source software. In this case, in the operation of the processor 110 which
detects the component, a problem in that a detection operation requires a long time may occur or an error may occur.
Accordingly, the processor 110 may perform the redundancy elimination for each of the plurality of open source software.
[0055] Specifically, when the processor 110 performs the redundancy elimination for first open source software among
the plurality of open source software, the processor 110 may recognize at least one function which appears in one or more
versions of the first open source software. In addition, the processor may generate a first dictionary data structure for the
first open source software based on the at least one function and the version in which the at least one function appears.
Here, the dictionary data structure may be a data structure which may store a value of a Key-Value type. In this case, the
first dictionary data structure may be distinguished into different groups according to the number of versions in which the
function appears. In this case, one or more functions which appear in one or more versions, respectively may be stored as
one dictionary data structure. However, the present disclosure is not limited thereto. Hereinafter, the method in which the
processor 110 performs the redundancy elimination according to the present disclosure will be described through FIGS. 3
and 4.

[0056] Meanwhile, the processor 110 of the computing device 100 may identify the component of the target software by
using the component database (S200).

[0057] Specifically, the processor 110 may recognize at least one open source software having a code similarity value to
the target software, which is equal to or more than a predetermined value among the plurality of open source software
stored in the component database unit 120. Here, the code similarity value may be a value determined based on the
number of functions commonly included in a function included in a target source code and a function of an application code
part of each of the plurality of open source software, and the number of functions of the application code part included in
each of the plurality of open source software. As an example, the processor 110 may determine at least one open source
software of which code similarity is 10% or more as the component of the target software. Hereinafter, contents regarding
the code similarity value according to the present disclosure will be described in more detail through FIG. 7.

[0058] FIG. 3 is a flowchart for describing an example of a method for constructing a component database by a
computing device according to some exemplary embodiments of the present disclosure. FIG. 4 is a diagram for describing

10

15

20

25

30

35

40

45

50

55

EP 4 033 380 B1

a dictionary data structure according to some exemplary embodiments of the present disclosure.

[0059] Referring to FIG. 3, the processor 110 of the computing device 100 may perform the redundancy elimination for
the first open source software among the plurality of open source software. In this case, the processor 110 may recognize
at least one function which appears in each of at least one version of the first open source software (S110).

[0060] Specifically, the processor 110 may set a hash value of each of atleast one function as a key, and set one or more
versions in which one or more functions appear, respectively to the value for the key. In addition, the processor 110 may
store the hash value and the one or more versions in the first dictionary data structure for the first open source software
(S120).

[0061] Forexample, referringto FIG. 4, the processor 110 may set a hash value 210 of an i function which appears in the
first open source software 200 as the key. Further, the processor 110 may set one or more versions 220 in which the i
function appears to the value. In this case, the hash value 210 of the i function and one or more versions 220 in which the i
function appears may be stored in the first dictionary data structure 230. However, the present disclosure is not limited
thereto.

[0062] Meanwhile, according to some exemplary embodiments of the present disclosure, the first dictionary data
structure 230 may be distinguished into different groups according to the number of versions in which the function appears.
[0063] As an example, referring to a first group 240, at least one dictionary data structure including a function which
appears only in one version may be distinguished in the first group 240.

[0064] As another example, referring to a second group 250, at least one dictionary data structure including functions
which appear in two versions may be distinguished in the second group 250.

[0065] Thatis, the processor 110 may distinguish each of at least one function included in the first open source software
200 into different groups according to the number of versions in which the function appears. Accordingly, the processor 110
may perform the redundancy elimination by constructing the component database so that at least one function included in
multiple versions of the first open source software 200 appears only once. However, the present disclosure is not limited
thereto.

[0066] Meanwhile,the processor 110 of the computing device 100 performs the above-described operation in each of all
open source software stored in the component database unit 120 to construct the component database. However, the
present disclosure is not limited thereto.

[0067] According to the above-described configuration, the redundancy elimination is performed for functions which
appear commonly in each version of the open source software which may be distinguished as at least one dictionary data
structure. Accordingly, when the processor 110 of the computing device 100 identifies the component of the target
software, a time required for computation may be reduced and occurrence of the error may also be reduced. Further, since
more open source software may be collected through the redundancy elimination, an excellent database may be
constructed in expandability and performance.

[0068] Meanwhile, according to some exemplary embodiments of the present disclosure, the processor 110 of the
computing device 100 may identify the component of the target software by using the constructed component database.
Hereinafter, an example of the method in which the processor 110 identifies the component of the target software
according to the present disclosure will be described.

[0069] FIG. 5is a flowchart for describing an example of a method for identifying a component of target software by a
computing device according to some exemplary embodiments of the present disclosure.

[0070] ReferringtoFIG. 5, the processor 110 of the computing device 100 may segment a source code included in each
of the plurality of open source software into an application code part and a borrowed code part (S210). Here, the application
code part may be a code recognized not to be prepared in another open source software. In addition, the borrowed code
part may be a code recognized as a code first prepared in another open source software.

[0071] Specifically, the processor 110 may select open source software of which code segmentation is to be performed
among the plurality of open source software and open source software which is to be analyzed through a comparison with
the open source software. In addition, the processor 110 may recognize one or more functions which appear commonly in
the open source software of which code segmentation is to be performed and the open source software to be compared
and analyzed. In this case, the processor 110 may recognize that the one or more functions appear earlier in the open
source software to be compared and analyzed. In this case, the processor 110 may recognize the one or more functions as
the borrowed code part in the open source software of which code segmentation is to be performed. In this case, when the
processor 110 recognizes that the one or more functions appear late in the open source software to be compared and
analyzed, the processor 110 may recognize the one or more functions as the application code part in the open source
software of which code segmentation is to be performed. Hereinafter, the method for performing the code segmentation
according to the present disclosure will be described in more detail through FIG. 6.

[0072] Meanwhile, the processor 110 of the computing device 100 may compare the target source code included in the
target software and the application code part included in each of the plurality of open source software. In addition, the
processor 110 may extract at least one second open source software used when preparing the target software among the
plurality of open source software (S220).

10

15

20

25

30

35

40

45

50

55

EP 4 033 380 B1

[0073] Specifically, the processor 110 compares the target source code included in the target software and the
application code part included in each of the plurality of open source software to recognize the code similarity value.
In addition, the processor 110 may extract at least one second open source software in which the code similarity value is
equal to or more than a predetermined value. As an example, when the code similarity value between the target software
and at least one second open source software is equal to or more than 10%, the processor 110 may extract at least one
second open source software. However, the presentdisclosure is not limited thereto. Hereinafter, the method for extracting
atleast one second open source software according to the present disclosure will be described in more detail through FIG.
7.

[0074] According to the above-described configuration, the processor 110 of the computing device 100 may segment a
source code included in each of the plurality of open source software into an application code part and a borrowed code
part. In this case, the processor 110 may extract at least one second open source software used when preparing the target
software by using only the application code part of the source code included in each of the plurality of open source software.
Accordingly, a time required for the processor 110 to extract at least one second open source software may be reduced.
[0075] Meanwhile, according to some exemplary embodiments of the present disclosure, the processor 110 of the
computing device 100 may remove a function recognized as the function included in the borrowed code part in performing
in performing the code segmentation in each of the plurality of open source software. Hereinafter, an example of the
method in which the processor 110 according to the present disclosure performs the code segmentation will be described.
[0076] FIG. 6 is a flowchart for describing an example of a method for performing code segmentation by a computing
device according to some exemplary embodiments of the present disclosure.

[0077] Referring to FIG. 6, the processor 110 of the computing device 100 may recognize one or more first functions
which appear in a first source code included in third open source software of which code segmentation is to be performed
among the plurality of open source software (S211). Here, the third open source software may be open source software
which is subjected to the redundancy elimination and stored in the component database unit 120.

[0078] Meanwhile, the processor 110 of the computing device 100 may select fourth open source software to be
compared and analyzed with the third open source software among the plurality of open source software (S212). Here, the
fourth open source software may be at least one open source software which is subjected to the redundancy elimination
and stored in the component database unit 120.

[0079] Meanwhile, the processor 110 of the computing device 100 may recognize one or more second functions which
appear in the second source code included in the fourth open source software (S213).

[0080] Meanwhile, the processor 110 of the computing device 100 may extract one or more common functions
recognized to be the same by comparing one or more first functions and one or more second functions (S214).

[0081] Meanwhile, the processor 110 of the computing device 100 may recognize one or more third functions which
appear earlier in the fourth open source software among one or more common functions (S215).

[0082] Specifically, release information of each of the plurality of open source software may be stored in the component
database unit 120. Here, the release information may be information on a date at which the open source software is
distributed. Accordingly, the processor 110 may recognize which open source software of the third open source software
and the fourth open source software is distributed earlier. In addition, when the processor 110 recognizes that the fourth
open source software is earlier distributed, the processor 110 may recognize one or more third functions included in the
fourth open source software among one or more common functions. However, the present disclosure is not limited thereto.
[0083] Meanwhile, the processor 110 of the computing device 100 may remove one or more third functions from a
second dictionary data structure related to the third open source software in the component database (S216).

[0084] In this case, only the application code part of the third open source software may remain in the second dictionary
data structure related to the third open source software. However, the present disclosure is not limited thereto.

[0085] Meanwhile, according to some exemplary embodiments of the present disclosure, the processor 110 of the
computing device 100 may recognize a first number of one or more second functions and a second number of one or more
third functions. In addition, when a value calculated based on the first number and the second number is equal to or more
than a predetermined value, the processor 110 may remove the one or more third functions from one or more first functions
included in the second dictionary data structure.

[0086] Specifically, the processor 110 may divide the first number of one or more second functions by the second number
of one or more third functions. In addition, when the processor recognized that a value acquired by dividing the first number
by the second number is equal to or more than 0.1, the processor may recognize that the second function is included in the
borrowed part of the third open source software to be subjected to the code segmentation. The reason s that if 10% or more
of a code base of the third open source software is included in the fourth open source software, it may be determined that
there is areusing possibility. In this case, the processor may remove the third function from one or more first functions which
appear in the first source code included in the third open source software. However, the present disclosure is not limited
thereto.

[0087] According to the above-described configuration, only the application code part of the third open source software
may remain in the second dictionary data structure related to the third open source software in the component database

10

15

20

25

30

35

40

45

50

55

EP 4 033 380 B1

unit 120. Accordingly, when the processor 110 of the computing device 100 identifies the component of the target software,
a time required for computation may be reduced and occurrence of the error may also be reduced.

[0088] Meanwhile, according to some exemplary embodiments of the present disclosure, the processor 110 of the
computing device 100 may extract at least one second open source software by using the code similarity value.
Hereinafter, an example of a method in which the processor 110 according to the present disclosure extracts at least
one second open source software by using the code similarity value will be described.

[0089] FIG. 7 is a flowchart for describing an example of a method for extracting at least one second open source
software by using a code similarity value by a computing device according to some exemplary embodiments of the present
disclosure.

[0090] Referring to FIG. 7, the processor 110 of the computing device 100 may recognize a third number of functions
commonly included in the function included in the target source code and the function of the application code part of each of
the plurality of open source software subjected to the code segmentation. In addition, the processor 110 may recognize a
fourth number of functions of the application code part of each of the plurality of open source software subjected to the code
segmentation. In this case, the processor 110 may recognize each code similarity value between each of the plurality of
open source software subjected to the code segmentation and the target software based on the third number and the fourth
number (S221).

[0091] Here, the code similarity value may be defined as an equation below.

[Equation 1]

Irn s

? =5

[0092] Here, ® may represent the code similarity value. In addition, T may represent the function of the target software.
Further, S may represent the function of the application code part of the plurality of open source software subjected to the
code segmentation.

[0093] Specifically, the processor 110 may recognize a value acquired by dividing the third number by the fourth number
as the code similarity value. However, the present disclosure is not limited thereto.

[0094] Meanwhile, the processor 110 of the computing device 100 may extract atleast one second open source software
in which the code similarity value is equal to or more than a predetermined value among the plurality of open source
software subjected to the code segmentation (S222). Here, the predetermined value may be 10%. However, the present
disclosure is not limited thereto. In addition, the processor 110 may determine the extracted second open source software
as the component of target software. However, the present disclosure is not limited thereto.

[0095] FIG. 8 is a diagram for comparing the present disclosure and related art according to some exemplary
embodiments of the present disclosure.

[0096] As representative conventional technology related to the present disclosure, there may be "Identifying Open-
Source License Violation and 1-day Security Risk at Large Scale." (OSSPolice) technology by Ruian Duan and 4 persons.
[0097] Referring to FIG. 8, at an analysis level, the OSSPolice in the related art may perform an analysis at a software
binary level. On the contrary, in the present disclosure, the analysis may be performed at a software source code level.
[0098] Meanwhile, in a utilization granularity unit, the OSSPolice in the related art may utilize a feature unit (e.g., a
character string or a function name). However, when open source software component detection is performed by the
feature units, modified reuse of a feature may not be considered. For example, the corresponding feature may not be used
(partially reused) or source files in the open source software may also be reused at different locations from the source files
in the existing open source software. In this case, accuracy may deteriorate. On the contrary, in the present disclosure, all
functions in the source code other than some features may be limited to a basic unit. Accordingly, even though only a part of
the source codes are reused, detection considering only the corresponding part may be possible. Further, since structural
information (e.g., a path of a file) of the source code is not utilized in a detection process, it may be possible to detect the
component regardless of whether the structure is changed.

[0099] Meanwhile, for comparison of expandability, in the case of the OSSPolice, an open source software set of 30 GB
(a total of approximately 2 billion lines considering only C and C++ software) is selected as a data set. In this case, 1000
seconds are required on average for extracting the feature from each software through the OSSPolice, and a detection
time (e.g., when the number of features is 10000, an average detection time also requires approximately 10000 seconds)
which is in proportion to the number of features may be required on average. On the contrary, in the case of the present
disclosure, an open source software set of 13 TB (a total of approximately 80 billion lines) is selected as an initial data set to
be expanded by approximately 40 times as compared with the related art. Further, 320 seconds may be required per
software on average in extracting the function and performing a preprocessing process, and when the component of the
open source software is detected in the target software, average 100 seconds or less may be required. Accordingly, when it
is evaluated that the expandability of the OSSPolice is prominent, it may be evaluated that the expandability of the present

10

15

20

25

30

35

40

45

50

55

EP 4 033 380 B1

disclosure is high.

[0100] Meanwhile, as a result of comparing the accuracy through the above-described test, in the case of the
OSSPolice, C/C++ OSS component detection accuracy except for a case where the structure is modified may be
82%. On the contrary, in the case of the present disclosure, component detection accuracy of 91% or more may be
achieved in spite of considering both the modifications of the code and the structure. Accordingly, when itis evaluated that
the accuracy of the OSSPolice is prominent, it may be evaluated that the expandability of the present disclosure is high.
[0101] Meanwhile, a recall rate may be compared through the above-described test. Here, the recall rate may mean a
value for representing a ratio of open source software which is not found even though the component of the target software
is correct. That is, high recall rate may indicate that the ratio of the open source software which is not found is low. In the
case of the OSSPolice, as the recall rate, a result at a level of 87% may be derived. On the contrary, in the present
disclosure, a result of 94% may be derived.

[0102] As a test result by comparing the OSSPolice which is the representative technology in the related art and the
present disclosure as described above, in the present disclosure, the component of the open source software may be
detected effectively as compared with the technology in the related art.

[0103] Meanwhile, as another technology in the related art, Dejavu code clone detection technology may exist. Table 1
below may show a result of component detection using the present disclosure (CENTRIS) and Dejavu.

10

EP 4 033 380 B1

"soAlleBau as|e} Jo Jaquinu 8y} :Nd# ‘SeAlsod as|ey) Jo Jaquinu ay) dd#
‘{saAnisod anJ} Jo Jaquunu ay) | # ‘uonejuswbas apo9 s

91’0 G20 ov'0 0l 0l 11evsy
0l 00 v0°0 S0°0 §6°0 uoisioaid

€L 0 14 S9 4 TN 44 4] 048 &€ 0 902} 18 0 S .8 1ejol
€l 0 € ol X4 9 6 9e¢ L 0 *Jx4 9l 0 L 9l 19/eids
8l 0 I Ll 9 4 17 cs 8 0 374 6l 0 4 6l Xpgso209
4 0 € Ll €¢ 9 14 LL 6 0 0§52 €¢ 0 0 €¢ umoiy
44 0 L 74 9¢¢ 8 8l Wy L 0 0Sv 6¢ 4 6¢ ggobnely
Nd# dd# 1# Nd# dd# 1# Nd# dd# 1# Nd# dd# 1# Nd# dd# 1# aiemyos

%001 %08 %08

(ploysaauy auy Ag payisselo) n efeq

(so noyum) SININID

(S92 ym) SIYLNTD

10

15

20

25

[1L @1qel]

(=
™

35

40

45

50

55

11

10

15

20

25

30

35

40

45

50

55

EP 4 033 380 B1

[0104] Specifically, Table 1 may show an open source software component identification result between the present
disclosure and Dejavu for 4 software projects (ArangoDB, Crown, Cocos2dx-classical, and Splayer). Referring to Table 1,
in the case of Dejavu, a modified component which may not be identified may be shown. As an example, in the case of
Dejavu, when a reused code ratio is lower than a selected threshold, the component may not be identified. Accordingly, in
the case of Dejavu, a low recall rate of up to 40% may be shown. In addition, Dejavu aims at detecting a project level clone,
but a mechanism of Dejavu may not include a processing routine of false positives due to overlapped open source
software. Thereafter, when the threshold is selected as 50%), Dejavu may show precision of 4% and when the threshold is
selected as 80%, Dejavu may show precision of 7%. When the threshold of Dejavu is selected 100%, precision of 100% is
shown, but as it can be seen that the recall rate is 16%, a partially reused component may not be identified.

[0105] Onthe contrary, referring to atestresult of the presentdisclosure (CENTRIS), precision of 95% and a recall rate of
100% may be shown when the code segmentation is applied (with cs). On the contrary, when the code segmentation is not
performed (withoutcs), in the present disclosure, the false positives may not be processed with the same reason as Dejavu
and precision of 5% may be shown. This may mean that the operation of the processor 110 of the computing device 100
performing step S210 which segments the source code into the application code part and the borrowed code part
successfully detects numerous false positives. Last, the open source software component which is identified only in
Dejavu and not identified in the present disclosure may not be shown among 4 software projects. In summary, the present
disclosure may show even higher precision and recall rate than Dejavu.

[0106] FIG.9is ageneral schematic view of an exemplary computing environment in which exemplary embodiments of
the present disclosure may be implemented.

[0107] The present disclosure has generally been described above in association with a computer executable
command which may be executed on one or more computers, but it will be well appreciated by those skilled in the art
that the present disclosure can be implemented through a combination with other program modules and/or as a
combination of hardware and software.

[0108] In general, the module in the present specification includes a routine, a procedure, a program, a component, a
data structure, and the like that execute a specific task or implement a specific abstract data type. Further, it will be well
appreciated by those skilled in the art that the method of the present disclosure can be implemented by other computer
system configurations including a personal computer, a handheld computing device, microprocessor-based or program-
mable home appliances, and others (the respective devices may operate in connection with one or more associated
devices as well as a single-processor or multi-processor computer system, a mini computer, and a main frame computer.
[0109] The exemplary embodiments described in the present disclosure may also be implemented in a distributed
computing environment in which predetermined tasks are performed by remote processing devices connected through a
communication network. In the distributed computing environment, the program module may be positioned in both local
and remote memory storage devices.

[0110] The computer generally includes various computer readable media. The computer includes, as a computer
accessible medium, volatile and non-volatile media, transitory and non-transitory media, and mobile and non-mobile
media. As a non-limiting example, the computer readable media may include both computer readable storage media and
computer readable transmission media.

[0111] The computer readable storage media include volatile and non-volatile media, transitory and non-transitory
media, and mobile and non-mobile media implemented by a predetermined method or technology for storing information
such as a computer readable instruction, a data structure, a program module, or other data. The computer readable
storage media include a RAM, a ROM, an EEPROM, a flash memory or other memory technologies, a CD-ROM, a digital
video disk (DVD) or other optical disk storage devices, a magnetic cassette, a magnetic tape, a magnetic disk storage
device or other magnetic storage devices or predetermined other media which may be accessed by the computer or may
be used to store desired information, but are not limited thereto.

[0112] The computer readable transmission media generally implement the computer readable instruction, the data
structure, the program module, or other data in a carrier wave or a modulated data signal such as other transport
mechanism and include all information transfer media. The term "modulated data signal" means a signal acquired by
setting or changing at least one of characteristics of the signal so as to encode information in the signal. As a non-limiting
example, the computer readable transmission media include wired media such as a wired network or a direct-wired
connection and wireless media such as acoustic, RF, infrared and other wireless media. A combination of any media
among the aforementioned media is also included in a range of the computer readable transmission media.

[0113] Anexemplary environment 1100 thatimplements various aspects of the present disclosure including a computer
1102 is shown and the computer 1102 includes a processing device 1104, a system memory 1106, and a system bus 1108.
The system bus 1108 connects system components including the system memory 1106 (not limited thereto) to the
processing device 1104. The processing device 1104 may be a predetermined processor among various commercial
processors. A dual processor and other multi-processor architectures may also be used as the processing device 1104.
[0114] Thesystembus 1108 may be any one of several types of bus structures which may be additionally interconnected
to a local bus using any one of a memory bus, a peripheral device bus, and various commercial bus architectures. The

12

10

15

20

25

30

35

40

45

50

55

EP 4 033 380 B1

system memory 1106 includes a read only memory (ROM) 1110 and a random access memory (RAM) 1112. A basic
input/output system (BIOS) is stored in the non-volatile memories 1110 including the ROM, the EPROM, the EEPROM,
and the like and the BIOS includes a basic routine that assists in transmitting information among components in the
computer 1102 at a time such as in-starting. The RAM 1112 may also include a high-speed RAM including a static RAM for
caching data, and the like.

[0115] The computer 1102 also includes an internal hard disk drive (HDD) 1114 (for example, EIDE and SATA) - the
internal hard disk drive 1114 may also be configured for an external purpose in an appropriate chassis (not illustrated), a
magnetic floppy disk drive (FDD) 1116 (for example, for reading from or writing in a mobile diskette 1118), and an optical
disk drive 1120 (for example, for reading a CD-ROM disk 1122 or reading from or writing in other high-capacity optical
media such as the DVD). The hard disk drive 1114, the magnetic disk drive 1116, and the optical disk drive 1120 may be
connected to the system bus 1108 by a hard disk drive interface 1124, a magnetic disk drive interface 1126, and an optical
disk drive interface 1128, respectively. An interface 1124 forimplementing an external drive includes, for example, at least
one of a universal serial bus (USB) and an IEEE 1394 interface technology or both of them.

[0116] The drives and the computer readable media associated therewith provide non-volatile storage of the data, the
data structure, the computer executable instruction, and others. In the case of the computer 1102, the drives and the media
correspond to storing of predetermined data in an appropriate digital format. In the description of the computer readable
storage media, the mobile optical media such as the HDD, the mobile magnetic disk, and the CD orthe DVD are mentioned,
butitwill be well appreciated by those skilled in the art that other types of storage media readable by the computer suchas a
zip drive, a magnetic cassette, a flash memory card, a cartridge, and others may also be used in an exemplary operating
environment and further, the predetermined media may include computer executable instructions for executing the
methods of the present disclosure.

[0117] Multiple program modules including an operating system 1130, one or more application programs 1132, other
program module 1134, and program data 1136 may be stored in the drive and the RAM 1112. All or some of the operating
system, the application, the module, and/or the data may also be cached inthe RAM 1112. It will be well appreciated thatthe
present disclosure may be implemented in operating systems which are commercially usable or a combination of the
operating systems.

[0118] A user may input instructions and information in the computer 1102 through one or more wired/wireless input
devices, for example, pointing devices such as a keyboard 1138 and a mouse 1140. Other input devices (not illustrated)
may include a microphone, an IR remote controller, a joystick, a game pad, a stylus pen, atouch screen, and others. These
and other input devices are often connected to the processing device 1104 through an input device interface 1142
connected to the system bus 1108, but may be connected by other interfaces including a parallel port, an IEEE 1394 serial
port, a game port, a USB port, an IR interface, and others.

[0119] A monitor 1144 or other types of display devices are also connected to the system bus 1108 through interfaces
such as avideo adapter 1146, and the like. In addition to the monitor 1144, the computer generally includes other peripheral
output devices (not illustrated) such as a speaker, a printer, others.

[0120] The computer 1102 may operate in a networked environment by using a logical connection to one or more remote
computers including remote computer(s) 1148 through wired and/or wireless communication. The remote computer(s)
1148 may be a workstation, a server computer, a router, a personal computer, a portable computer, a micro-processor
based entertainment apparatus, a peer device, or other general network nodes and generally includes multiple
components or all of the components described with respect to the computer 1102, but only a memory storage device
1150 is illustrated for brief description. The illustrated logical connection includes a wired/wireless connection to a local
area network (LAN) 1152 and/or a larger network, for example, a wide area network (WAN) 1154. The LAN and WAN
networking environments are general environments in offices and companies and facilitate an enterprise-wide computer
network such as Intranet, and all of them may be connected to a worldwide computer network, for example, the Internet.
[0121] When the computer 1102 is used in the LAN networking environment, the computer 1102 is connected to a local
network 1152 through a wired and/or wireless communication network interface or an adapter 1156. The adapter 1156 may
facilitate the wired or wireless communication to the LAN 1152 and the LAN 1152 also includes a wireless access point
installed therein in order to communicate with the wireless adapter 1156. When the computer 1102 is used in the WAN
networking environment, the computer 1102 may include a modem 1158, is connected to a communication server on the
WAN 1154, or has other means that configure communication through the WAN 1154 such as the Internet, etc. The modem
1158 which may be an internal or external and wired or wireless device is connected to the system bus 1108 through the
serial port interface 1142. In the networked environment, the program modules described with respect to the computer
1102 or some thereof may be stored in the remote memory/storage device 1150. It will be well known that an illustrated
network connection is exemplary and other means configuring a communication link among computers may be used.

[0122] The computer 1102 performs an operation of communicating with predetermined wireless devices or entities
which are disposed and operated by the wireless communication, for example, the printer, a scanner, a desktop and/or a
portable computer, a portable data assistant (PDA), a communication satellite, predetermined equipment or place
associated with a wireless detectable tag, and a telephone. This at least includes wireless fidelity (Wi-Fi) and Bluetooth

13

10

15

20

25

30

35

40

45

50

55

EP 4 033 380 B1

wireless technology. Accordingly, communication may be a predefined structure like the network in the related art or justad
hoc communication between at least two devices.

[0123] The wireless fidelity (Wi-Fi) enables connection to the Internet, and the like without a wired cable. The Wi-Fiis a
wireless technology such as the device, for example, a cellular phone which enables the computer to transmit and receive
dataindoors or outdoors, that is, anywhere in a communication range of a base station. The Wi-Fi network uses a wireless
technology called IEEE 802.11 (a, b, g, and others) in order to provide safe, reliable, and high-speed wireless connection.
The Wi-Fi may be used to connect the computers to each other or the Internet and the wired network (using IEEE 802.3 or
Ethernet). The Wi-Fi network may operate, for example,at a data rate of 11 Mbps (802.11a) or 54 Mbps (802.11b) in
unlicensed 2.4 and 5 GHz wireless bands or operate in a product including both bands (dual bands).

[0124] It may be appreciated by those skilled in the art that various exemplary logical blocks, modules, processors,
means, circuits, and algorithm steps described in association with the exemplary embodiments disclosed herein may be
implemented by electronic hardware, various types of programs or design codes (for easy description, herein, designated
as "software"), or a combination of all of them. In order to clearly describe the intercompatibility of the hardware and the
software, various exemplary components, blocks, modules, circuits, and steps have been generally described above in
association with functions thereof. Whether the functions are implemented as the hardware or software depends on design
restrictions given to a specific application and an entire system. Those skilled in the art of the present disclosure may
implement functions described by various methods with respect to each specific application, but it should not be
interpreted that the implementation determination departs from the scope of the present disclosure.

[0125] Various exemplary embodiments presented herein may be implemented as manufactured articles using a
method, a device, or a standard programming and/or engineering technique. The term "manufactured article" includes
computer programs or media which are accessible by a predetermined computer-readable device. For example, a
computer readable storage includes a magnetic storage device (for example, a hard disk, a floppy disk, a magnetic strip, or
the like), an optical disk (for example, a CD, a DVD, or the like), a smart card, and a flash memory device (for example, an
EEPROM, a card, a stick, a key drive, or the like), butis not limited thereto. The term "machine-readable media" includes a
wireless channel and various other media that can store, possess, and/or transfer instruction(s) and/or data, but is not
limited thereto.

[0126] FIG. 10 is a diagram for comparing the present invention and related art according to some exemplary
embodiments of the present disclosure.

[0127] FIG. 10A may be a diagram for showing a detection result of open-source software components of ArangoDB
using Dejavu which is the relate art. FIG. 10B may be a diagram for showing a detection result of open-source software
components of ArangoDB using CENTRIS according to the present invention.

[0128] Referringto FIGS. 10A and 10B, it may be confirmed that in the detection result of the components using Dejavu,
there are more false positives than in the detection result of the components using CENTRIS according to the present
invention. Specifically, it may be confirmed that DejaVu detects more "An OSS not a component of ArangoDB" than
CENTRIS according to the present invention.

[0129] Further, it may be confirmed that in the detection result of the components using Dejavu, there are more false
negatives than in the detection result of the components using CENTRIS according to the presentinvention. Specifically, it
may be confirmed that DejaVu cannot detect several "An OSS component of ArangoDB". Accordingly, it may be confirmed
that the accuracy of the detection result of the components using CENTRIS according to the present invention is higher
than the accuracy of the detection result of the components using DejaVu.

[0130] Thedescription ofthe presented exemplary embodiments is provided so that those skilled in the art of the present
disclosure use orimplement the present disclosure. Various modifications of the exemplary embodiments will be apparent
to those skilled in the art and general principles defined herein can be applied to other exemplary embodiments without
departing from the scope of the present disclosure. Therefore, the present disclosure is not limited to the exemplary
embodiments presented herein, but should be interpreted within the widest range which is coherent with the principles and
new features presented herein.

Claims

1. A method for identifying open source software (OSS) components using a processor of a computing device, the
method comprising:

constructing a component database by performing redundancy elimination for each of a plurality of open source
software, so thatatleast one function included in multiple versions of first open source software appears only once

in the component database, the constructing of the component database including

when performing the redundancy elimination for the first open source software among the plurality of open

14

10

15

20

25

35

40

45

50

55

EP 4 033 380 B1

source software, determining in each of the multiple versions of the first open source software at least one
function, and

setting a hash value of each of the at least one function as a key and setting atleast one version in which each
of the at least one function appears to a value for the key, and storing a key value in a first dictionary data
structure for the first open source software, wherein the first dictionary data structure is distinguished into
different groups according to a number of versions in which the function appears; and

identifying a component of target software by using the component database, including

segmenting in each of the plurality of open source software a source code into an application code partand a
borrowed code part, wherein the application code part is a code recognized not to be prepared in another
open source software and the borrowed code part is a code recognized as a code first prepared in another
open source software, and

comparing a target source code included in the target software and the application code partincluded in each
of the plurality of open source software to determine among the plurality of open source software atleast one
second open source software used when preparing the target software,

including

determining a code similarity value between each of the plurality of open source software and the target
software based on a third number of functions which are common to the target source code and to the
application code part of each of the plurality of open source software subjected to the code segmentation and
a fourth number of functions of the application code part of each of the plurality of open source software
subjected to the code segmentation, and

determining atleast one second open source software among the plurality of open source software subjected
to the code segmentation for which the code similarity value is equal to or more than a predetermined value as
the identified component of target software.

2. The method of claim 1, wherein the segmenting of the source code included in each of the plurality of open source
software into the application code part and the borrowed code part includes

recognizing one or more first functions which appear in a first source code included in third open source software
to be subjected to the code segmentation among the plurality of open source software,

selecting fourth open source software to be analyzed through a comparison with the third open source software
among the plurality of open source software,

recognizing one or more second functions which appear in a second source code included in the fourth open
source software,

comparing the one or more first functions and the one or more second functions, and extracting one or more
common functions recognized to be the same,

recognizing one or more third functions which appeared in an earlier release in the fourth open source software
among the one or more common functions, and

removing the one or more third functions from a second dictionary data structure related to the third open source
software in the component database.

3. The method of claim 2, wherein the removing of the one or more third functions from the second dictionary data
structure related to the third open source software in the component database includes
when a value calculated based on a first number of the one or more second functions and a second number of the one
or more third functions is equal to or more than a predetermined value, removing the one or more third functions from
the one or more first functions included in the second dictionary data structure.

4. The method of claim 1, wherein the code similarity value is determined based on a first equation,

& = irns

the first equation is it , and

the @ represents the code similarity value, the T represents the functions of the target software, and the S
represents the functions of the application code part of the plurality of open source software subjected to the code
segmentation.

15

10

15

20

25

35

40

45

50

55

EP 4 033 380 B1
5. A device for identifying open source software components, the device comprising:

a processor performing redundancy elimination for each of a plurality of open source software; and
acomponent database unit storing a result of performing the redundancy elimination, so that at least one function
included in multiple versions of first open source software appears only once in the component database,
wherein the processor is configured to identify a component of target software by using the component database
unit and by performing: segmenting in each of the plurality of open source software a source code into an
application code part and a borrowed code part, wherein the application code partis a code recognized not to be
prepared in another open source software and the borrowed code part is a code recognized as a code first
prepared in another open source software, and

comparing a target source code included in the target software and the application code part of each of the
plurality of open source software to determine at least one second open source software among the plurality of
open source software used when preparing the target software, determining a code similarity value between each
of the plurality of open source software and the target software based on a third number of functions common to
the target source code and to the application code part of each of the plurality of open source software subjected to
a code segmentation and a fourth number of functions of the application code part of each of the plurality of open
source software subjected to the code segmentation, and

determining at least one second open source software among the plurality of open source software subjected to
the code segmentation for which the code similarity value is equal to or more than a predetermined value as the
identified component of the target software;

wherein the processor is further configured when performing the redundancy elimination for the first open source
software among the plurality of open source software, to determine at least one function in each of the multiple
versions of the first open source software, and

to setahash value of each of the atleast one function as akey and to set atleast one version in which each of the at
least one function appears to a value for the key, and to store a key value in the component database unit as a first
dictionary data structure for the first open source software,

wherein the first dictionary data structure is distinguished into different groups according to a number of versions
in which the function appears.

6. The device of claim 5, wherein the processor

recognizes one or more first functions which appearin a first source code included in third open source software to
be subjected to code segmentation among the plurality of open source software,

selects fourth open source software to be analyzed through a comparison with the third open source software
among the plurality of open source software,

recognizes one or more second functions which appear in a second source code included in the fourth open
source software,

compares the one or more first functions and the one or more second functions and extracts one or more common
functions recognized to be the same,

recognizes one or more third functions which appeared in an earlier release in the fourth open source software
among the one or more common functions, and

removes the one or more third functions from a second dictionary data structure related to the third open source
software in the component database unit.

7. The device of claim 6, wherein the processor removes the one or more third functions from the one or more first
functions includedin the second dictionary data structure when a value calculated based on afirstnumber of the one or
more second functions and a second number of the one or more third functions is equal to or more than a
predetermined value.

8. The device of claim 5, wherein the code similarity value is determined based on a first equation,

@ = iimiﬁ%
the first equation is $,and
the @ represents the code similarity value, the T represents the functions of the target software, and the S
represents the functions of the application code part of the plurality of open source software subjected to the code

segmentation.

16

EP 4 033 380 B1
Patentanspriiche

1. Verfahrenzum Identifizieren von Komponenten von Open-Source-Software (OSS) unter Verwendung eines Prozess-
ors einer Rechenvorrichtung, wobei das Verfahren umfasst:

10

15

20

25

30

35

40

45

50

55

Aufbauen einer Komponentendatenbank durch Durchfiihren einer Redundanzeliminierung fir jede von einer
Mehrzahl von Open-Source-Softwares, so dass mindestens eine Funktion, die in mehreren Versionen einer
ersten Open-Source-Software enthalten ist, nur einmal in der Komponentendatenbank erscheint, wobei das
Aufbauen der Komponentendatenbank einschlief3t:

Bestimmen mindestens einer Funktion in jeder von den mehreren Versionen der ersten Open-Source-
Software bei der Durchfiihrung der Redundanzeliminierung fir die erste Open-Source-Software aus der
Mehrzahl von Open-Source-Softwares und

Einstellen eines Hash-Werts von jeder von der mindestens einen Funktion als Schllssel und Einstellen
mindestens einer Version, in der jede von der mindestens einen Funktion erscheint, auf einen Wert fir den
Schllssel und Speichern eines Schliisselwerts in einer ersten Worterbuchdatenstruktur fiir die erste Open-
Source-Software, wobei die erste Woérterbuchdatenstruktur gemag einer Zahl von Versionen, in denen die
Funktion erscheint, in verschiedene Gruppen unterschieden wird; und

Identifizieren einer Komponente einer Ziel-Software unter Verwendung der Komponentendatenbank, ein-
schlieBlich von:

in jeder von der Mehrzahl von Open-Source-Softwares: Segmentieren eines Quellcodes in einen Anwen-
dungscode-Teil und einen geborgten Code-Teil, wobei der Anwendungscode-Teil ein Code ist, der als einer
erkannt wird, der in keiner anderen Open-Source-Software zu erstellen ist, und der geborgte Code-Teil ein
Code ist, der als Code erkannt wird, der zuerst in einer anderen Open-Source-Software erstellt worden ist,
und

Vergleichen eines in der Ziel-Software enthaltenen Ziel-Quellcodes und des Anwendungscode-Teils, der in
jeder von der Mehrzahl von Open-Source-Softwares enthalten ist, um aus der Mehrzahl von Open-Source-
Softwares mindestens eine zweite Open-Source-Software zu bestimmen, die bei der Erstellung der Ziel-
Software verwendet wird, aufweisend:

Bestimmen eines Code-Ahnlichkeitswerts zwischen jeder von der Mehrzahl von Open-Source-Softwa-
res und der Ziel-Software auf Basis einer dritten Zahl von Funktionen, die dem Ziel-Quellcode und dem
Anwendungscode-Teil von jeder von der Mehrzahl von Open-Source-Softwares, die der Code-Seg-
mentierung unterzogen wurden, gemeinsam sind, und einer vierten Zahl von Funktionen des Anwen-
dungscode-Teils von jeder von der Mehrzahl von Open-Source-Softwares, die der Code-Segmentie-
rung unterzogen wurden, und

Bestimmen mindestens einer zweiten Open-Source-Software von der Mehrzahl von Open-Source-
Softwares, die der Code-Segmentierung unterzogen wurden, fiir die der Code-Ahnlichkeitswert gleich
grolR oder grofer ist als ein vorgegebener Wert, als die identifizierte Komponente der Ziel-Software.

2. Verfahren nach Anspruch 1, wobei die Segmentierung des in jeder von der Mehrzahl von Open-Source-Softwares
enthaltenen Quellcodes in den Anwendungscode-Teil und den geborgten Code-Teil umfasst:

Erkennen einer oder mehrerer erster Funktionen, die in einem ersten Quellcode erscheinen, der in einer dritten
Open-Source-Software von der Mehrzahl von Open-Source-Softwares, die der Code-Segmentierung zu unter-
ziehen ist, enthalten ist,

Auswahlen einer vierten zu analysierenden Open-Source-Software durch einen Vergleich mit der dritten Open-
Source-Software von der Mehrzahl von Open-Source-Softwares,

Erkennen einer oder mehrerer zweiter Funktionen, die in einem in der vierten Open-Source-Software ent-
haltenen zweiten Quellcode erscheinen,

Vergleichen der einen oder der mehreren ersten Funktionen und der einen oder der mehreren zweiten Funk-
tionen und Extrahieren einer oder mehrerer gemeinsamer Funktionen, die als gleich erkannt werden,
Erkennen einer oder mehrerer dritter Funktionen, die in einem friiheren Release in der vierten Open-Source-
Software erschienen sind, aus der einen oder den mehreren gemeinsamen Funktionen und

Entfernen der einen oder der mehreren dritten Funktionen aus einer zweiten, auf die dritte Open-Source-
Software bezogenen Woérterbuchdatenstruktur in der Komponentendatenbank.

17

EP 4 033 380 B1

3. Verfahrennach Anspruch 2, wobei das Entfernen der einen oder der mehreren dritten Funktionen aus der zweiten, auf
die dritte Open-Source-Software bezogenen Wérterbuchdatenstruktur in der Komponentendatenbank umfasst:
wenn ein Wert, der auf Basis einer ersten Zahl der einen oder der mehreren zweiten Funktionen und einer zweiten
Zahl der einen oder der mehreren dritten Funktionen berechnet wird, gleich grol3 oder gréRer ist als ein vorgegebener
Wert: Entfernen der einen oder der mehreren dritten Funktionen aus der einen oder den mehreren ersten Funktionen,
die in der zweiten Wérterbuchdatenstruktur enthalten sind.

4. \Verfahren nach Anspruch 1, wobei der Code-Ahnlichkeitswert auf Basis einer ersten Gleichung bestimmt wird,

10

15

20

25

30

35

40

45

50

55

T s

? =5

die erste Gleichung ist und

das ® den Code-Ahnlichkeitswert darstellt, das T die Funktionen der Ziel-Software darstellt und das S die
Funktionen des Anwendungscode-Teils der Mehrzahl von Open-Source-Softwares, die der Code-Segmentie-
rung unterzogen wurden, darstellt.

5. Vorrichtung zum Identifizieren von Komponenten einer Open-Source-Software, wobei die Vorrichtung umfasst:

einen Prozessor, der eine Redundanzeliminierung fiir jede von einer Mehrzahl von Open-Source-Softwares
durchfihrt; und

eine Komponentendatenbankeinheit, die ein Ergebnis der Durchfiihrung der Redundanzeliminierung speichert,
so dass mindestens eine Funktion, die in mehreren Versionen der ersten Open-Source-Software enthalten ist,
nur einmal in der Komponentendatenbank erscheint,

wobei der Prozessor dazu eingerichtet ist, eine Komponente einer Ziel-Software zu identifizieren durch Ver-
wenden der Komponentendatenbankeinheit und durch Durchfiihren von: Segmentieren eines Quellcodes in
einen Anwendungscode-Teil und einen geborgten Code-Teil in jeder von der Mehrzahl von Open-Source-
Softwares, wobei der Anwendungscode-Teil ein Code ist, der als einer erkannt wird, der in keiner anderen Open-
Source-Software zu erstellen ist, und der geborgte Code-Teil ein Code ist, der als zuerst in einer anderen Open-
Source-Software erstellter Code erkannt wird, und

Vergleichen eines in der Ziel-Software enthaltenen Ziel-Quellcodes und des Anwendungscode-Teils von jeder
von der Mehrzahl von Open-Source-Softwares, um mindestens eine zweite Open-Source-Software von der
Mehrzahl von Open-Source-Softwares zu bestimmen, die bei der Erstellung der Ziel-Software verwendet wird,
Bestimmen eines Code-Ahnlichkeitswerts zwischen jeder von der Mehrzahl von Open-Source-Softwares und
der Ziel-Software auf Basis einer dritten Zahl von Funktionen, die dem Ziel-Softwarecode und dem Anwen-
dungscode-Teil von jeder von der Mehrzahl von Open-Source-Softwares, die einer Code-Segmentierung
unterzogen wurden, gemeinsam sind, und einer vierten Zahl von Funktionen des Anwendungscode-Teils von
jeder von der Mehrzahl von Open-Source-Softwares, die der Code-Segmentierung unterzogen wurden, und
Bestimmen mindestens einer zweiten Open-Source-Software von der Mehrzahl von Open-Source-Softwares,
die der Code-Segmentierung unterzogen wurden, fiir die der Code-Ahnlichkeitswert gleich oder gréRer ist als ein
vorgegebener Wert identifizierte Komponente der Ziel-Software;

wobei der Prozessor ferner dazu eingerichtet ist, bei der Durchfiihrung der Redundanzeliminierung fir die erste
Open-Source-Software aus der Mehrzahl von Open-Source-Softwares mindestens eine Funktion in jeder von
den mehreren Versionen der ersten Open-Source-Software zu bestimmen und einen Hash-Wert von jeder von
der mindestens einen Funktion als Schliissel einzustellen und mindestens eine Version, in der jede von der
mindestens einen Funktion erscheint, auf einen Wert fiir den Schllissel einzustellen und einen Schliisselwert in
der Komponentendatenbankeinheit als erste Worterbuchdatenstruktur fir die erste Open-Source-Software zu
speichern,

wobei die erste Worterbuchdatenstruktur geman einer Zahl von Versionen, in denen die Funktion erscheint, in
unterschiedliche Gruppen unterschieden wird.

6. Vorrichtung nach Anspruch 5, wobei der Prozessor

eine oder mehrere erste Funktionen erkennt, die in einem ersten Quellcode erscheinen, derin einer dritten Open-
Source-Software von der Mehrzahl von Open-Source-Softwares enthalten ist, die einer Code-Segmentierung zu
unterziehen ist,

eine vierte zu analysierende Open-Source-Software durch einen Vergleich mit der dritten Open-Source-Soft-
ware von der Mehrzahl von Open-Source-Softwares auswahlt,

eine oder mehrere zweite Funktionen erkennt, die in einem zweiten Quellcode erscheinen, der in der vierten

18

10

15

20

25

30

35

40

45

50

55

EP 4 033 380 B1

Open-Source-Software enthalten ist,

die eine oder die mehreren ersten Funktionen und die eine oder die mehreren zweiten Funktionen vergleicht und
eine oder mehrere gemeinsame Funktionen extrahiert, die als gleich erkannt wurden,

eine oder mehrere in einer friiheren Release erschienene dritte Funktionen in der vierten Open-Source-Software
unter der einen oder den mehreren gemeinsamen Funktionen erkennt und

die eine oder die mehreren dritten Funktionen aus einer auf die dritte Open-Source-Software bezogenen zweiten
Worterbuchdatenstruktur in der Komponentendatenbank entfernt.

7. Vorrichtung nach Anspruch 6, wobei der Prozessor die eine oder die mehreren dritten Funktionen aus der einen oder

den mehreren ersten in der zweiten Worterbuchdatenstruktur enthaltenen Funktionen entfernt, wenn ein Wert, der
aufBasis einer ersten Zahl der einen oder der mehreren zweiten Funktionen und einer zweiten Zahl der einen oder der
mehreren dritten Funktionen berechnet wird, gleich oder grof3er ist als ein vorgegebener Wert.

8. Vorrichtung nach Anspruch 5, wobei der Code-Ahnlichkeitswert auf Basis einer ersten Gleichung bestimmt wird,

Iro s

P= isl

die erste Gleichung ist und

das ® den Code-Ahnlichkeitswert darstellt, das T die Funktionen der Ziel-Software darstellt und das S die
Funktionen des Anwendungscode-Teils der Mehrzahl von Open-Source-Softwares, die der Code-Segmentie-
rung unterzogen wurden, darstellt.

Revendications

1. Méthode d’identification de composants de logiciel ouvert (OSS, open source software) a I'aide d’un processeur d’un
dispositif informatique, la méthode comprenant :

la construction d’une base de données de composants en réalisant une élimination de redondance pour chacun
d’'une pluralité de logiciels ouverts, de sorte qu’au moins une fonction incluse dans de multiples versions d’un
premier logiciel ouvert apparaisse une fois uniquement dans la base de données de composants, la construction
de la base de données de composants incluant

lors de la réalisation de I'élimination de redondance pour le premier logiciel ouvert parmi la pluralité de
logiciels ouverts, la détermination dans chacune des multiples versions du premier logiciel ouvert d’au moins
une fonction et

le réglage d’une valeur de hachage de chacune des au moins une fonction en tant que clé et réglage a une
valeur pour la clé d’au moins une version dans laquelle chacune des au moins une fonction apparatt, et le
stockage d’une valeur clé dans une premiére structure de données de dictionnaire pour le premier logiciel
ouvert, dans laquelle la premiere structure de données de dictionnaire se distingue en différents groupes en
fonction d’'un nombre de versions dans lesquelles la fonction apparatit ; et

l'identification d’'un composant d’un logiciel cible a I'aide de la base de données de composants, incluant

la segmentation dans chacun de la pluralité de logiciels ouverts d’'un code source en une partie de code
d’'application et une partie de code emprunté, dans laquelle

la partie de code d’application est un code reconnu comme n’étant pas préparé dans un autre logiciel ouvert
et la partie de code emprunté est un code reconnu en tant que code préparé au préalable dans un autre
logiciel ouvert, et

la comparaison entre un code source cible inclus dans le logiciel cible et la partie de code d’application incluse
dans chacun de la pluralité de logiciels ouverts pour déterminer parmila pluralité de logiciels ouverts au moins un
deuxiéme logiciel ouvert utilisé lors de la préparation du logiciel cible, incluant

la détermination d’'une valeur de similarité de code entre chacun de la pluralité de logiciels ouverts et le
logiciel cible sur la base d’un troisieme nombre de fonctions qui sont communes au code source cible etala
partie de code d’application de chacun de la pluralité de logiciels ouverts soumis ala segmentation de code et
d’un quatrieme nombre de fonctions de la partie de code d’application de chacun de la pluralité de logiciels

19

10

15

20

25

30

35

40

45

50

55

EP 4 033 380 B1

ouverts soumis a la segmentation de code, et

la détermination d’au moins un deuxiéme logiciel ouvert parmi la pluralité de logiciels ouverts soumis a la
segmentation de code pour lequel la valeur de similarité de code est supérieure ou égale a une valeur
prédéterminée en tant que composant identifié de logiciel cible.

2. Meéthode selonlarevendication 1, dans laquelle la segmentation du code source inclus dans chacun de la pluralité de
logiciels ouverts en la partie de code d’'application et la partie de code emprunté inclut

la reconnaissance d’une ou plusieurs premiéres fonctions qui apparaissent dans un premier code source inclus
dans un troisiéme logiciel ouvert a soumettre a la segmentation de code parmi la pluralité de logiciels ouverts,
la sélection d’'un quatriéme logiciel ouvert a analyser via une comparaison avec le troisiéme logiciel ouvert parmi
la pluralité de logiciels ouverts,

la reconnaissance d’'une ou plusieurs deuxiemes fonctions qui apparaissent dans un deuxiéme code source
inclus dans le quatriéme logiciel ouvert,

la comparaison entre les une ou plusieurs premiéres fonctions et les une ou plusieurs deuxiémes fonctions, et
I'extraction d’'une ou plusieurs fonctions communes reconnues comme étant les mémes,

lareconnaissance d’une ou plusieurs troisiemes fonctions qui sont apparues dans une version antérieure dans le
quatrieme logiciel ouvert parmi les une ou plusieurs fonctions communes, et

la suppression des une ou plusieurs troisiemes fonctions depuis une deuxiéme structure de données de
dictionnaire relative au troisieme logiciel ouvert dans la base de données de composants.

3. Meéthode selon la revendication 2, dans laquelle la suppression des une ou plusieurs troisiemes fonctions depuis la
deuxiéme structure de données de dictionnaire relative au troisi€me logiciel ouvert dans la base de données de
composants inclut
lorsqu’une valeur calculée sur la base d’'un premier nombre des une ou plusieurs deuxiémes fonctions et d’'un
deuxiéme nombre des une ou plusieurs troisi€mes fonctions est supérieure ou égale a une valeur prédéterminée, la
suppression des une ou plusieurs troisi€mes fonctions depuis les une ou plusieurs premiéeres fonctions incluses dans
la deuxiéme structure de données de dictionnaire.

4. Meéthode selon la revendication 1, dans laquelle la valeur de similarité de code est déterminée sur la base d’'une
premiére équation,

irns
® = st

la premiére équation est , et
le @ représente la valeur de similarité de code, le T représente les fonctions du logiciel cible, etle S représente les
fonctions de la partie de code d’application de la pluralité de logiciels ouverts soumis a la segmentation de code.

5. Dispositif d’'identification de composants de logiciel ouvert, le dispositif comprenant :

un processeur réalisant une élimination de redondance pour chacun d’une pluralité de logiciels ouverts ; et
une unité de base de données de composants stockant un résultat de réalisation de I'élimination de redondance,
de sorte qu’au moins une fonction incluse dans de multiples versions du premier logiciel ouvert apparaisse une
fois uniquement dans la base de données de composants,

dans lequel le processeur est configuré pour identifier un composant d’un logiciel cible a I'aide de I'unité de base
de données de composants et en réalisant : une segmentation dans chacun de la pluralité de logiciels ouverts
d’un code source en une partie de code d’'application et une partie de code emprunté, dans lequel

la partie de code d’application est un code reconnu comme n’étant pas prépare dans un autre logiciel ouvert et la
partie de code emprunté est un code reconnu en tant que code préparé au préalable dans un autre logiciel ouvert,
et

la comparaison entre un code source cible inclus dans le logiciel cible et la partie de code d’application de chacun
de la pluralité de logiciels ouverts pour déterminer au moins un deuxiéme logiciel ouvert parmi la pluralité de
logiciels ouverts utilisé lors de la préparation du logiciel cible,

la détermination d’une valeur de similarité de code entre chacun de la pluralité de logiciels ouverts et le logiciel
cible sur la base d’un troisieme nombre de fonctions communes au code source cible et a la partie de code
d’application de chacun de la pluralité de logiciels ouverts soumis a une segmentation de code et d’'un quatrieme
nombre de fonctions de la partie de code d’application de chacun de la pluralité de logiciels ouverts soumis a la
segmentation de code, et

20

10

20

25

35

40

45

50

55

EP 4 033 380 B1

la détermination d’au moins un deuxiéme logiciel ouvert parmi la pluralité de logiciels ouverts soumis a la
segmentation de code pour lequel la valeur de similarité de code est supérieure ou égale a une valeur
prédéterminée en tant que composant identifié de logiciel cible ;

dans lequel le processeur est en outre configuré

lors de la réalisation de I'élimination de redondance pour le premier logiciel ouvert parmi la pluralité de logiciels
ouverts, pour déterminer au moins une fonction dans chacune des multiples versions du premier logiciel ouvert,
et

pour régler une valeur de hachage de chacune des au moins une fonction en tant que clé et pour régler au moins
une version dans laquelle chacune des au moins une fonction apparait a une valeur pour la clé, et pour stocker
une valeur clé dans I'unité de base de données de composants en tant que premiére structure de données de
dictionnaire pour le premier logiciel ouvert,

dans lequel la premiére structure de données de dictionnaire se distingue en différents groupes en fonction d’un
nombre de versions dans lesquelles la fonction apparait.

6. Dispositif selon la revendication 5, dans lequel le processeur

reconnait une ou plusieurs premiéres fonctions qui apparaissent dans un premier code source inclus dans un
troisieme logiciel ouvert a soumettre a une segmentation de code parmi la pluralité de logiciels ouverts,
sélectionne un quatriéme logiciel ouvert a analyser via une comparaison avec le troisiéme logiciel ouvert parmila
pluralité de logiciels ouverts,

reconnait une ou plusieurs deuxiémes fonctions qui apparaissent dans un deuxiéme code source inclus dans le
quatriéme logiciel ouvert,

compare les une ou plusieurs premiéres fonctions et les une ou plusieurs deuxiémes fonctions, et extrait une ou
plusieurs fonctions communes reconnues comme étant les mémes,

reconnait une ou plusieurs troisiemes fonctions qui sont apparues dans une version antérieure dans le quatrieme
logiciel ouvert parmi les une ou plusieurs fonctions communes, et

supprime les une ou plusieurs troisiemes fonctions depuis une deuxiéme structure de données de dictionnaire
relative au troisiéme logiciel ouvert dans I'unité de base de données de composants.

7. Dispositif selon la revendication 6, dans lequel le processeur supprime les une ou plusieurs troisiemes fonctions
depuis les une ou plusieurs premiéres fonctions incluses dans la deuxiéme structure de données de dictionnaire
lorsqu’une valeur calculée sur la base d’un premier nombre des une ou plusieurs deuxiemes fonctions et d’'un
deuxiéme nombre des une ou plusieurs troisi€mes fonctions est supérieure ou égale a une valeur prédéterminée.

8. Dispositif selon la revendication 5, dans lequel la valeur de similarité de code est déterminée sur la base d’'une
premiére équation,

- irnsl
® il

la premiere équation est , et
le ® représente la valeur de similarité de code, le T représente les fonctions du logiciel cible, etle S représente les
fonctions de la partie de code d’application de la pluralité de logiciels ouverts soumis a la segmentation de code.

21

EP 4 033 380 B1

Fig. 1

100

Computing device
110

Pracacenr
I 1 VNIV

120

Component database unit

22

EP 4 033 380 B1

Fig. 2

(Sttt)

\ 5100

Construct component database by performing
redundancy elimination for each of plurality of
open source software

Y 5200

Identify component of target software
by using component database

Y
End

23

EP 4 033 380 B1

Fig. 3

(Stat)

v S110

When performing redundancy elimination for
first open source software among plurality of
open source software, recognize at least one
function which appears in each of at least one
version of first open source software

Y 5120

Set hash value of each of at least one function as
key and setting at least one version in which
each of at least one function appears to value
for key, and store key value in first dictionary
data structure for first open source software

i
End

24

200

0SS

EP 4 033 380 B1

Fig. 4

210 220 230
N B [[

function i :[[;/e_rgion_l_],}[path(i, 1)*] i

,,,,,,,,,,,,,,,,,,,,,,,,

function j | : [version 2], [path(j, 2)]

function k | : [version 1, version 2], [path(k, 1), path(k, 2)]

ou]

Bin 2 | function | | : [version 2, version 3], [path(l, 2), path(l, 3)]

=
=
=

path(i, 1)*: The path of function i in version 1

25

EP 4 033 380 B1

Fig. 5

(Sttt)

v 5210

Segment source code included in each of
plurality of open source software into
application code part and borrowed code part

Y 5220

Comparing a target source code included in
target software and application code part included
in each of plurality of open source software to
extract at least one second open source software
used when preparing target software among
among plurality of open source software

Y
End

26

EP 4 033 380 B1

Fig. 6

(Start)

\ S211

Recognize one or more first functions which appear
in first source code included in third open source
software to be subjected to code segmentation

among plurality of open source software

v S212

Select fourth open source software to be analyzed
through comparison with third open source software
among plurality of open source software

v §213

Recognize one or more second functions which
appear in second source code included in
in fourth open source software

v S214

Compare one or more first functions and one

VI T Vil v i i IS Uiiv vi

or more second fur)ctions and extract one or
more common functions recognized to be same

Y S215

Recognize one or more third functions which
appear earlier in fourth open source software
among one or more common functions

\d 5216

Remove one or more third functions from second
dictionary data structure related to third open
source software in component database

Y
End

27

EP 4 033 380 B1

Fig. 7

(Stat)

v ~S221

Recognize each code similarity value between each of
plurality of open source software and target software
based on third number of functions commonly included
in function included in target source code and function of
unique code part of each of plurality of open source
software subjected to code segmentation and fourth
number of functions of unique code part of each of plurality
of open source software subjected to code segmentation

M §222

Extract at least one second open source software
in which code similarity value is equal to or more than
predetermined value among plurality of open source
software subjected to code segmentation

i
End

28

EP 4 033 380 B1

Fig. 8
0SSPolice Present invention
Analysis level Software binary Software source code
Utilization Feature unit (e.g., character string, : :
granularity unit function name, etc.) Function unit
Expandability Prominent High
Accurac Prominent (detecting modified High (detecting modified
y component is impossible) component is possible)
1. Utilizing 2B LoC data set 1. Utilizing 80B LoC data set
2. Average feature extraction time (approximately 40 times)
Quantitative | PE" 0SS of 1000 seconds 2. Average function extraction time
comparison 3. Detection time = number of per 0SS of 320 seconds
features of 0SS 3. Detection time < 100 seconds

(except for modified component)

4. Call rate of 94%, precision of 91%
(considering modified component)

29

EP 4 033 380 B1

Fig. 9
S T
1104 | |OPERATION SYSTEM! |
PROCESSING DEVICE IS 4
) S paisry
| | APPLICATION | |
vy 1108 1106 bl e 4 :
SYSTEM MEMORY Py 1134
1112/ / |1 MODULE |
S |
nAM L4 ! ~1136!
-— NAF :I_ ________ z::;q
1110 L DATA &
ROM / Lo s
1124 | 451114 v 1114
v fZIZZ°""TICzy
<> INTERFACE EMBEDDED HDD |OUTER MOUNTED |
| |
1116 D
1126 FDD
«—»{ INTERFACE fe—» 1118
DISK
1120
1128 OPTICAL DRIVER 1144
<«—>| INTERFACE [« 1122 MONITOR
DISK
1138
1146 KEYBOARD
<—1 VIDEQ ADAPTER |« 1140
MOUSE
1142 WIRE/WIRELESS
< INPUT DEVICE [* 1154 1148
INTERFACE ~ jw+—>] MODEM |je—»| WAN J«—| REMOTE
N COMPUTER(S)
1156 1152 1150
WIRE/WIRELESS
<—>| NETWORK ADAPTER |« > N~ [yeMory/
STORAGE
DEVICE

30

EP 4 033 380 B1

Fig. 10

] Detection coverage () An 0SS component &) An 0SS not a component of ArangoDB

Arango| |
DB

I' o

(a) DejaVu (50%) (b) CENTRIS
(many false positives and negatives) (highly precise)

31

EP 4 033 380 B1
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.
Patent documents cited in the description
e KR 1020210010585 [0001] e US 2020410095 A1 [0007]

« US 20190205125 A1 [0006]

Non-patent literature cited in the description

¢ TAKASHI ISHIO et al. Software ingredients: Detec- ¢ Identifying Open-Source License Violation and 1-day
tion of Third-party Component Reuse in Java Soft- Security Risk at Large Scale. ACM Conference on
ware Release. IEEE/ACM 13th Working Conference Computer and Communications Security (CCS),
on Mining Software Repositories, 2016 [0007] 2017 [0009]

32

	bibliography
	description
	claims
	drawings
	cited references

