BLOOMFUZZ Unveiling Bluetooth L2CAP Vulnerabilities via State Cluster Fuzzing with Target-Oriented State Machines #### ESORICS'2024 (29th European Symposium on Research in Computer Security) Pyeongju Ahn, Yeonseok Jang, Seunghoon Woo*, Heejo Lee* Korea University pingjuu@korea.ac.kr Sep 16th, 2024 ### **INDEX** 1. Background 2. Motivation 3. BLOOMFUZZ 4. Evaluation 5. Conclusion #### 1-1. Bluetooth Classic Stack - Bluetooth is short-range wireless technology standard - Bluetooth L2CAP The L2CAP facilitates the transmission and reception between lower and upper-level [Bluetooth BR/EDR Stack] # 1-2. Stateful Fuzzing - Stateful fuzzing is effective in identifying L2CAP vulnerabilities - Stateful fuzzing - The communication process of the L2CAP can be represented by states - A fuzzing technique designed to consider these states to detect potential threats # 1-2. Stateful Fuzzing - Stateful fuzzing is effective in identifying L2CAP vulnerabilities - Stateful fuzzing - The communication process of the L2CAP can be represented by states - A fuzzing technique designed to consider these states to detect potential threats **2-1. Motivation** 1 2 3 4 5 ### There is a gap between specification and device - The L2CAP state machine in the specification differs from the one in the device - Bluetooth devices are implemented based on the specification, but are modified [State machine of Bluetooth 5.2 specification] [State machine of BlueDroid v12.1.0.r19] # 2-2. Challenge #1 #### Difficulty in precisely generating a state machine - States = {Normal states, Missing states, Hidden states} - ✓ Normal state : - ✓ Missing state: (M) ✓ Hidden state: (H) [Example state machine of specification] [Example state machine of device] # 2-2. Challenge #1 - Difficulty in precisely generating a state machine - States = {Normal states, Missing states, Hidden states} - ✓ Normal state : (N) - ✓ Missing state: (M) ✓ Hidden state: (H) We need to precisely generate the state machine for the target device by addressing the missing and hidden states 1 2 3 4 5 ## 2-2. Challenge #2 Difficulty in correctly tracking states during fuzzing process The current state of the target device ≠ Target state of the fuzzer Test packet is likely to be ignored or rejected early [State machine of Bluetooth 5.2 specification] ## 2-2. Challenge #2 Difficulty in correctly tracking states during fuzzing process The current state of the target device \neq Target state of the fuzzer Test packet is likely to be ignored or rejected early it is essential to identify the target device's current state #### 3-1, BLOOMFUZZ Discovering L2CAP vulnerabilities via state cluster fuzzing with target-oriented state machines #### Key techniques - State clustering - Generating target-oriented state machine ### 3-1. BLOOMFUZZ ### High-level workflow BLOOMFUZZ mutate packets and performs fuzzing based on this target-oriented machine. ### 3-2. State clustering (P1) - A cluster is a set of one or more states with similar attributes - Valid *L2CAP commands - The role on the target device *Most transitions are carried out through L2CAP commands | Cluster
IDX | States | Commands | Role* | | |----------------|---|--|-------|--| | 1 | CLOSED | All commands | C/P | | | 2 | WAIT_CONNECT | L2CAP_Connect_Req/Rsp | | | | 3 | WAIT_CONNECT_RSP | L2CAP_Connect_Req/Rsp | C | | | 4 | WAIT_CREATE | L2CAP_Create_Channel_Req/Rsp | P | | | 5 | WAIT_CREATE_RSP | L2CAP_Create_Channel_Req/Rsp | C | | | 6 | WAIT_CONFIG | L2CAP_Configuration_Req/Rsp | C/P | | | 7 | WAIT_SEND_CONFIG,
WAIT_CONFIG_RSP,
†WAIT_IND_FINAL_RSP,
†WAIT_FINAL_RSP,
†WAIT_CONTROL_IND | L2CAP_Configuration_Req/Rsp | Р | | | 8 | WAIT_CONFIG_REQ,
WAIT_CONFIG_REQ_RSP,
†WAIT_IND_FINAL_RSP,
†WAIT_FINAL_RSP,
†WAIT_CONTROL_IND | L2CAP_Configuration_Req/Rsp | | | | 9 | OPEN | All commands | | | | 10 | WAIT_MOVE,
WAIT_MOVE_CONFIRM | L2CAP_Move_Channel_Req/Rsp, L2CAP_Move_Channel_Confirmation_Req/Rsp | | | | 11 | WAIT_CONFIRM_RSP,
WAIT_MOVE_RSP | L2CAP_Move_Channel_Req/Rsp,
L2CAP_Move_Channel_Confirmation_Req/Rsp | | | | 12 | WAIT_DISCONNECT | L2CAP_Disconnection_Req/Rsp | | | ^{*}The role of the target device (Central or Peripheral); †States belonging to Clusters #7 and #8. ## 3-2. State clustering (P1) #### A cluster is a set of one or more states with similar attributes - Valid *I 2CAP commands - The role on the target device *Most transitions are carried out through L2CAP commands #### BLOOMFUZZ can achieve two key effects: - 1. The ability to handle to hidden states - 2. The efficient generation of test packets with a low probability of rejection | Cluster
IDX | States | Commands | Role* | | |----------------|---|---|-------|--| | 1 | CLOSED | All commands | | | | 2 | WAIT_CONNECT | L2CAP_Connect_Req/Rsp | P | | | 3 | WAIT_CONNECT_RSP | L2CAP_Connect_Req/Rsp | C | | | 4 | WAIT_CREATE | L2CAP_Create_Channel_Req/Rsp | P | | | 5 | WAIT_CREATE_RSP | L2CAP_Create_Channel_Req/Rsp | C | | | 6 | WAIT_CONFIG | L2CAP_Configuration_Req/Rsp | C/P | | | 7 | WAIT_SEND_CONFIG, WAIT_CONFIG_RSP, †WAIT_IND_FINAL_RSP, †WAIT_FINAL_RSP, †WAIT_CONTROL_IND | L2CAP_Configuration_Req/Rsp | P | | | 8 | WAIT_CONFIG_REQ, WAIT_CONFIG_REQ_RSP, TWAIT_IND_FINAL_RSP, WAIT_FINAL_RSP, WAIT_CONTROL_IND | L2CAP_Configuration_Req/Rsp | C | | | 9 | OPEN | All commands | | | | 10 | WAIT_MOVE,
WAIT_MOVE_CONFIRM | L2CAP_Move_Channel_Req/Rsp, L2CAP_Move_Channel_Confirmation_Req/Rsp | | | | 11 | WAIT_CONFIRM_RSP,
WAIT_MOVE_RSP | L2CAP_Move_Channel_Req/Rsp, L2CAP_Move_Channel_Confirmation_Req/Rsp | | | | 12 | WAIT_DISCONNECT | L2CAP_Disconnection_Req/Rsp | | | ^{*}The role of the target device (Central or Peripheral); †States belonging to Clusters #7 and #8 3. BLOOMFUZZ ### 3-3. State machine construction (P1) 1 2 3 4 5 - BLOMMFUZZ generates the state machine by addressing the missing and hidden states - 1. Generating a specification-based state machine A manual analysis of the specification while considering all the states and transitions # 3-3. State machine construction (P1) - BLOMMFUZZ generates the state machine by addressing the missing and hidden states - 2. Pruning missing states - 2.1. Traversing the specification-based state machine - 2.2. Verifying whether the states specified in the specification are implemented in the target device # 3-3. State machine construction (P1) - BLOMMFUZZ generates the state machine by addressing the missing and hidden states - 3. Addressing hidden states - 3.1. Record communication - 3.2. Parse and transform into the state machine # 3-4. Cluster-based packet mutation (P2) #### Field classification - BLOOMFUZZ generates valid packets for target cluster - Then, BLOOMFUZZ performs mutations only in fields that do not affect the packet validity [Mutable field selection for packet mutation] ## 3-5. Crash Detection (P3) BLOOMFUZZ detects crashes by sending mutated packets to the target device # 4-1. Experimental Setup #### Experimental environment - Ubuntu 20.04.LTS - 16 GB memory, Intel Core i5-7500 CPU @ 3.30 GHz, and 64 GB SSD - Cambridge Silicon Radio Bluetooth Classic dongle ### Target devices | ID | Type | Vendor | Name | OS/FW^* | |----|--|--|--------------------|----------------| | D1 | Laptop | LG | Gram | Windows 10 | | D2 | Laptop | LG | Gram | Ubuntu 18.04.4 | | D3 | Phone | Google | Pixel7 | Android 14 | | D4 | Phone | Google | Pixel3 | Android 12 | | D5 | Tablet | Samsung | Galaxy Tab S6 Lite | Android 12 | | D6 | Control of the Contro | Control of the Contro | | R175XXU0AUK1 | | D7 | Earphone | Xiaomi | Redmi Buds 3 Pro | 1.0.9.9 | ### Comparison target • BSS, BFuzz, L2Fuzz # 4-2. Experiment on crash detection #### BLOOMFUZZ discovered 56 crashes | Target | #Detected crashes in each fuzzer | | | | | |--------|----------------------------------|--------|-------|-----|--| | Target | BLOOMFUZZ | L2Fuzz | BFuzz | BSS | | | D1 | 17 | 0 | 3 | 0 | | | D2 | 6 | 0 | 0 | 0 | | | D3 | 8 | 0 | 8 | 0 | | | D4 | 1 | 0 | 0 | 0 | | | D5 | 0 | 0 | 12 | 0 | | | D6 | 14 | 4 | 0 | 0 | | | D7 | 10 | 26 | 0 | 0 | | | Total | 56 | 30 | 23 | 0 | | [Crash detection results of each fuzzer] - We reported two vulnerabilities that were reproducible among the detected crashes to the respective vendors - Only BFUZZ was able to find the crash on D5 because it mutates all fields that BLOOMFUZZ and L2FUZZ do not # 4-3. Effectiveness of state machine generation ### BLOOMFUZZ precisely generates a target-oriented state machine - Q1: How effectively are missing states pruned (A_m) ? - Q2: How effectively are the implemented states identified (A_i) ? *: #Traceable hidden states *Ground Truth: Pixel 3 running to Android 12 # 4-4. Efficiency of state tracking and packet mutation 1 2 3 4 5 BLOOMFUZZ shows the packet acceptance (A_t) of 77% and the mutation efficiency (M_e) of 49% | Fuzzers | #Total Sent Pkts | #Rejected Pkts | # Malformed Pkts | $oldsymbol{A}_t$ | M_e | |-----------|------------------|----------------|------------------|------------------|-------| | BLOOMFUZZ | 1,459,515 | 341,858 | 923,468 | 77% | 49% | | L2Fuzz | 926,768 | 511,070 | 585,616 | 45% | 28% | | BFuzz | 2,002,862 | 1,457,943 | 99,745 | 27% | 1% | | BSS | 1,202,518 | 908,986 | 389,763 | 24% | 8% | [Measurement result of packet acceptance ratio and mutation efficiency] The packet acceptance $$A_t = 1 - \left(\frac{\# \text{Rejected Packets}}{\# \text{Total Sent Packets}} \right)$$ The mutation efficiency $$M_e = \left(\frac{\# \text{Malformed Packets}}{\# \text{Total Sent Packets}}\right) \times A_t$$ #### 5. Conclusion #### Conclusion - BLOOMFUZZ is based on the Bluetooth v5.2 specification but can be used with any Bluetooth version, as v5.2 includes all states from each version - Based on cluster, BLOOMFUZZ infers the state machine implemented in the target device with high accuracy and enhances fuzzing efficiency - BLOOMFUZZ exhibited significantly higher fuzzing efficiency, reporting 2 vulnerabilities in real-world Bluetooth devices #### Thanks for your attention - BLOOMFUZZ will be presented at the ESORICS'2024 conference - BLOOMFUZZ source code repository is (https://github.com/pingjuu/BLOOMFUZZ) - BLOOMFUZZ will be available at (https://iotcube.net) as a part of B2FUZZ #### Contact - PyeongJu Ahn (pingjuu@korea.ac.kr) - Computer & Communication Security Lab (https://ccs.korea.ac.kr)