KQREA -GSSA ¥EERLAR (8) T Lss

& Privacy Laboratory

CNEPS: A Precise Approach for Examining Dependencies
among Third-Party C/C++ Open-Source Components

Yoonjong Na, Seunghoon Woo
Joomyeong Lee, Heejo Lee

Korea University
nooryvaa@korea.ac.kr
Apr. 19, 2024

mailto:nooryyaa@korea.ac.kr

Motivation

What is software dependency?

* Open-source software (OSS) reuse became popular in development

* We will briefly call reused software as component in this presentation

Motivation

What is software dependency?

* Open-source software (OSS) reuse became popular in development

* Dependencies refer to a relationship where a component requires another component

Motivation

What is software dependency?

* Open-source software (OSS) reuse became popular in development
* Dependencies refer to a relationship where a component requires another component

* Tracking components dependencies also became important because...

Motivation

What is software dependency?

* Open-source software (OSS) reuse became popular in development
* Dependencies refer to a relationship where a component requires another component
* Tracking components dependencies also became important because...

(1) Dependency can be used for security threats management by exploitability triage

(2) Precise dependency can be used to provide supply chain transparency

Motivation

What is software dependency?
* Open-source software (OSS) reuse became popular in development

* Dependencies refer to a relationship where a software requires other reused software

* Tracking component dependencies also became important because of...

(1) Dependency can be used for security threats management by exploitability triage
(2) Precise dependency can be used to provide supply chain transparency

MongoDB

snappy libunwind

zlib@zlibWrapper ‘
zlib@zliB

—> Dependency

Why it is difficult?

Motivation

* Package manager provides useful meta-data

arangodb / js / node / package.json (&

@ pluma4345 and KVS85 [devel] Update JS depende

Blame

{

O 00 N o AW N R

(I -
N R ©

"content-type': "~1.0.5",

"error-stack-parser": "A2.1.4",,——"”—”””"»

50 lines (50 loc) -

"dependencies": {
"accepts": "~1.3.8",
"ajV”: IIA8.12.0II,

"ansi-html-community": "~0.0.8",
"agbh": "~2.1.0",
"babel-code-frame": "*6.26.0",
"chai": "~3.5.0",
"content-disposition": ""0.5.4",

"dependencies": {

"accepts": "~1.3.8",

"ajv'": "78.12.0",
"ansi-html-community": ""0.0.8",
"agb": "~2.1.0",
"babel-code-frame":
"~3.5.0",
"content-disposition”: "70.5.4",
"content-type": "*1.0.5",
"dedent": ""0.7.0",
"error-stack-parser': "72.1.4",

"76.26.0",
“"chai":

dedent": "~0.7.0",

Motivation

Why it is difficult?

* Package manager provides useful meta-data

* What if meta-data does not exist?

* Developers sometimes get components by code-clone (copy-paste)

arangodb / js / node / package.json (&

"dependencies": {
@ pluma4345 and KVS85 [devel] Update JS depende

"accepts": "*1.3.8",
Ilajvll. IIA8 12 all
L] L] L] '
Blame 50 lines (50 loc) - "ansi—html—community": "79.0.8",
1 { Ilaqbll: IIA2.1.0II'
2 "dependencies": { "babel-code-frame": ""6.26.0",
3 "accepts": "~1.3.8", IIChai": ”A3l5l@”r
4 "ajV”: IIA8.12.0II'
[}] 3 . . L} I 1A [
5 "ansi-html-community": "~0.0.8", content—d15p051t10n . 0.5.4 ’
6 “agb®: "72.1.0%, "content-type": "~1.0.5",
7 "babel-code-frame": "*6.26.0", nded th. NAg.7.0"
8 "chai": "~3.5.0", eden ' e !
9 "content-disposition": "~@.5.4", "error-stack-parser'": "~2.1.4",
10 "content-type': "~1.0.5",
11 "dedent": ""0.7.0", /
12 "error-stack-parser": "~2.,1.4",

Motivation

* There are two ways to reuse components with the code-clone method

1) Developer can clone function directly into developers' file

Q Code reuse G

c-ares Curl

2) Developer can clone part of components and reuse them as a library

Q_______L_i_?_r_?_rx_rse_s_? _____ ,Q

grpc Protobuf

Motivation

Challenge 1: Indistinguishable files
* Files that are unclear whether reused or not

* Unidentified reused files may lead to unidentified dependencies
e e.g., single-lined function, implementation of the cryptographic function

MongoDB

Unnoted ——
Dependency! | \ snhappy

Component > :{/}:

libunwind

L
Unclear X zlib@zlibWrapper’
Reused Files \"“"“"““”"/ZIib@zlib

—> Dependency
----»Missing Dependencies

Motivation

Challenge 2: Duplicated component
* The same component can be cloned in the target software multiple times
* Incorrectly distinguished components may lead to misidentified dependencies

Misidentified
Dependency!

Component «-sssesesesasnsss >

{

/

¥

{

/

O\

}

Reused from
zlib@zlibWrrapper

O\

Reused from
zlib@zlib

Duplicated Components!

snappy

\\
~
~
S
Ss

MongoDB

’
s
s
s
’
,/
td

- ~

—> Dependency
----»Missing Dependencies

libunwind

10

CNEPS: A Precise Approach for Examining Dependencies
among Third-Party C/C++ Open-Source Components

11

CNEPS

CNEPS (Component Dependencies Scanner)

* A novel approach to precisely identify dependencies between components

Background: Notations

£ \ Declares f -] r
- Function f
Header File Declaration ‘_' T \ }
) === oy Vodule
Function

Source Files Definition

Module Granularity

Key idea: Module granularity dependency analysis
* Module can also explained as a set of files that are reusable as a library
* To reuse a component as a library, these files need to be cloned together

Imports Header
Component >

Reused Module

13

Overview of CNEPS

* CNEPS comprises three phases:
1. Module Construction
e Constructs modules for given input source code software

2. Dependency Analysis
* Analyzes dependencies using the module

3. Merging Components
* Merges components that are non-duplicates

14

P1. Module Construction

Module Constructions

e Parses all functions declarations and definitions to reconstruct modules

CARES_EXTERN void

CARES_EXTERN struct timeval

Declarations ~ WEEp *ares_timeout...;
CARES_EXTERN void

ares_free_string. ..

ares.h with declarations

void
(/% Paremeters */)

nnnnnnnn AAdr AviArys L AaATiAEr,

struct timeval
*ares_timeout
(/* Paremeters /)

Definitions {

void
ares_free_string
(/* Paremeters */)

{

ares_free(str);
// a single line function

}

ares_gethostbyaddr.c,
ares_timeout.c
ares_free_string.c 15

P2. Dependency Analysis

* Analyze dependencies using modules

(1) Reused by function cloning (code reuse)
* Examine other components (function) included in the module

Q Code reuse G

c-ares Curl

(2) Reused by cloning and reused as a library (library reuse)
* Examine components that try to reuse other module (#include directives)

Q_______L_i_?_r_?rx_rfﬂ?f _____ .Q

grpc Protobuf

16

P2. Dependency Analysis (cont.)

Dependency analysis with other granularities

* Missing dependency can be caused by indistinguishable files

—~
N
—

)

Component Depends on R

—~
N
—

—_
N
—

Reused File

17

P2. Dependency Analysis (cont.)

Dependency analysis with other granularities

* Missing dependency can be caused by indistinguishable files

{/} Indistinguishable
file!
Component Depends on i__\\/
PONENT . vcvvcecncscnsrssssssnsnsssannnnnnnnns > |{/}:
/ h

I \
1/}
Missing ==

Dependency! Reused File

18

P2. Dependency Analysis (cont.)

Module Granularity

* We do not miss dependencies from reused indistinguishable files

Indistinguishable
files!

F //
Depends on {d___\\
Component > | f Ll{/ }:

L - a

Reused Module

19

P3. Merging Components

* CNEPS merges components that are cloned from the same project

(2) Who includes this component? (parent component)
(3) Is there a duplicated file? (the existence of the same files)

mongo/src/third_party/grpc/dist/src

O

Protobuf

mongo/src/third_party/protobuf

O

Protobuf

20

P3. Merging Components

* CNEPS merges components that are cloned from the same project
(1) Which directory is the component cloned at? (cloned path)
(2) Who includes this component? (parent component)
(3) Is there a duplicated file? (the existence of the same files)

mongo/src/third_party/grpc/dist/src mongo/src/third_party/protobuf

Q_______L_‘P_ffff_y__f_e_&{%_e______,@ O

grpc Protobuf Protobuf

P3. Merging Components

* CNEPS merges components that are cloned from the same project
(1) Which directory is the component cloned at? (cloned path)
(2) Who includes this component? (parent component)
(3) Is there a duplicated file? (the existence of the same files)

mongo/src/third_party/grpc/dist/src mongo/src/third_party/protobuf

Library reuse
O ----------------------- *O gy THE SAME FILE! O

grpc Protobuf \ E / Protobuf

node generator.cc

Graph Output

(cloned path: mongo/src/third_party/grpc/dist/src)

Q Library reuse

)

grpc Protobuf
' Library reuse
C Code reuse O
c-ares Curl
Protobuf

(cloned path: mongo/src/third_party/protobuf)

Consolidated dependency graph

MongoDB

Protobuf

A
c-ares Protobuf <.~
l Duplicated

Q components

23

Evaluation

EVALUATION

Q1. Is really CNEPS performing? (Accuracy of CNEPS)

Dataset

* Top 100 C/C++ open-source software from GitHub
* Collected based on the number of stargazers

Comparison Target
e Centris (ICSE’21), an approach that detects reused components
* We advanced Centris to detect dependency between components

Woo, Seunghoon, et al. "CENTRIS: A precise and scalable approach for identifying modified open-source software reuse." 2021 ICSE

25

Accuracy of CNEPS

e (Metric) Examined Precision, Recall of the dependencies

* CNEPS outperformed existing approach with
89.9% Precision and 93.2% Recall
* Discovered around 2.2 times more correct dependencies

Approaches Identified Deps Precision
Centris 219 63.5%

CNEPS 480 89.9%

Recall
42.5%
93.2%

26

Accuracy of CNEPS

* (1) Accuracy in identifying component of indistinguishable files

#identified indist- TP Precision

inguishable files

34,611 31,681 2,930 91.5%

* (2) Accuracy in distinguishing duplicated components

All #identified Dupl-

TP FP Precision

Components icated Components
297 40 33 7 82.5%

27

Impact of CNEPS

Q2. Is really CNEPS useful? (Impact of CNEPS)

Dataset
 Collected 1,000 C/C++ OSS based on stargazers

 Examined the number of dependencies discovered when challenges are dealt

28

Impact of CNEPS

Q2. Is really CNEPS useful? (Impact of CNEPS)

Dataset
 Collected 1,000 C/C++ OSS based on stargazers

* Examined the number of dependencies discovered when challenges are dealt

672 Deps

Non-considered

29

Impact of CNEPS

Q2. Is really CNEPS useful? (Impact of CNEPS)

Dataset
 Collected 1,000 C/C++ OSS based on stargazers

* Examined the number of dependencies discovered when challenges are dealt

861 Deps,
+28%

672 Deps TR
:L{_/_}J

Indistinguishable

Non-considered .
files

Impact of CNEPS

Q2. Is really CNEPS useful? (Impact of CNEPS)

Dataset
 Collected 1,000 C/C++ OSS based on stargazers

* Examined the number of dependencies discovered when challenges are dealt

861 Deps, 919 Deps,
+28% +36%
672 Deps PR (\
%) prg ()
L_— o Protobuf
Indistinguishable Duplicated

Non-considered .
files Components

Q2. Is really CNEPS useful? (Impact of CNEPS)

Dataset

Impact of CNEPS

 Collected 1,000 C/C++ OSS based on stargazers

* Examined the number of dependencies discovered when challenges are dealt

672 Deps

Non-considered

861 Deps,
+28%

(/}

Indistinguishable
Files

919 Deps,

+36%

Prd

a

O

Protobuf

Duplicated
Components

1179 Deps,
+75%

a

i{ /\}\: Prc

L a

O

Protobuf

Both

Impact of CNEPS

Distribution of dependencies
* CNEPS was able to examine 75% more dependencies!

Both challenges \\\\\\\\\$
6%

2%
Duplicated
components

L 16%

Indistinguishable
files

33

Conclusion

* We present CNEPS, a precise approach for dependency analysis with
accuracy of 89.9% precision and 93.2% recall

* CNEPS was able to examine 75% more dependencies by dealing with
indistinguishable files and duplicated components

* Equipped with CNEPS, developers can ...
1) provide more precise software transparency (e.g., SBOM)
2) examine exploitability of vulnerabilities

34

Q&A

CNEPS Source code
* CNEPS repository: https://github.com/sodium49/CNEPS-public

Contact

e Email: nooryyaa@korea.ac.kr

* Computer & Communication Security Lab (https://ccs.korea.ac.kr)

 Software Security and Privacy Laboratory (https://ssp.korea.ac.kr)

* Center for Software Security and Assurance (https://cssa.korea.ac.kr)

35

https://github.com/sodium49/CNEPS-public
mailto:nooryyaa@korea.ac.kr
https://ccs.korea.ac.kr/
https://ssp.korea.ac.kr/
https://cssa.korea.ac.kr/

Appendix — scalability

* Elapsed time — lines of code

* Average 8.22s

Elapsed Time (s)

800
700
600
500
400
300
200
106
(5]

106°

10t

1092

1e* 1e* 1e°

Lines of Code (log scaled)

10°

167

168

36

Appendix — FPs and FNs

* FP: Indistinguishable file problem

* Because we generate module using Name of the function and declaration,
sometimes error occurs

* e.g., function with same name (memcpy)

* FP: Determining the exact module when there is a header with the same
name as a system library

e #include <string.h>

* FN: multiple header with the same name
e e.g., 10 headers with name <foo.h> within same path distance

37

Appendix — Advanced Centris

* Implemented with verification method Centris (ICSE’21) used
* In the following example, grpoc depends on Protobuf

mongo/src/third_party/grpc/dist/src

Q_______L_iP_fE_r_Y__f_e_E{ie______,Q

grpc Protobuf

Appendix — Code Reuse Analysis

(1) Internal Reuse Analysis
* Count number of included components

* For example, in MongoDB, ares.h module contains...

e 23 c-ares

o« 7 curl

* 34 jndistinguishable files Q Code reuse G
c-ares Curl

=>» This module is cloned from c-ares

* Indistinguishable files are also cloned from c-ares

39

Appendix — Library reuse analysis

(2) Library reuse analysis

* Examine functions reusing another component by importing header
* “Hinclude” directive

* For example, in MongoDB, a module of a grpc was reusing protobuf

grpc importing protobuf!

Library reuse
// Generates Objective C gRPC service interface out of Protobuf IDL. e e EEEEEE PP PR PR
#include <memory>

#include <google/protobuf/compiler/objectivec/objectivec_helpers.h> grpc Protobuf

Accuracy

1 1 1 CENTRIS CNEPS
* CNEPS outperformed existing approaches with)
8.899 -
* 89.9% Precision 0.8
@.635
* 93.2% Recall 0.6
. . . @.425
* Discovered around 2.2 times more correct dependencies °*
0.2
0
Precision Recall
Approach (}:raph‘ . #ncluded #ldentified #Identlﬁe:d #TPs #FPs #FNs Precision Recall
classification nodes reused files | dependencies
CENTRIS Small 68 8,843 17 11 6 0 64.7% 100%
Moderate 21 7,741 102 56 46 52 54.9% 51.9%
Large 11 23,998 226 152 74 244 67.3% 38.4%
Total 100 40,582 345 219 126 296 63.5% 42.5%
CNEPS Small 68 18,212 11 11 0 0 100% 100%
Moderate 21 15,160 108 106 2 2 98.1% 98.1%
Large 11 41,821 415 363 52 33 87.5% 92.8%
Total 100 75,193 534 480 54 35

41

Appendix — indistinguishable files

Challenge 1: Indistinguishable files
* Files that are unclear whether reused or not

* Unidentified reused files may lead to unidentified dependencies
e e.g., single-lined function, implementation of the cryptographic function
* libcrypto, openssl, openssh, ...

Unnoted _
Dependency! : \ void) s
.................... I ares_free_string
Code base --- > |{/}| (/% Parencters +/)

L a {

ares_free(str);
UnCIear // a single line function

Reused Files J

Motivation

Challenge 1: Indistinguishable files
* Files that are unclear whether reused or not

* Unidentified reused files may lead to unidentified dependencies

e e.g., single-lined function, implementation of the cryptographic function
MongoDB

Unnoted Reused File! snappy libunwind

#ifdef HAVE_LIBZ

#include "zlib.h"

#tendif

9(zlib@zlibWrapper

-
-
-

____________________ zlib@zlib

—> Dependency
----»Missing Dependencies

#ifdef HAVE_LIBLZO2
#include "1lzo/lzolx.h"
#tendif

43

