
0

CNEPS: A Precise Approach for Examining Dependencies
among Third-Party C/C++ Open-Source Components

Yoonjong Na, Seunghoon Woo

Joomyeong Lee, Heejo Lee

Korea University

nooryyaa@korea.ac.kr

Apr. 19, 2024

mailto:nooryyaa@korea.ac.kr

Motivation

What is software dependency?

• Open-source software (OSS) reuse became popular in development

• We will briefly call reused software as component in this presentation

1

Motivation

What is software dependency?

• Open-source software (OSS) reuse became popular in development

• Dependencies refer to a relationship where a component requires another component

2

Motivation

What is software dependency?

• Open-source software (OSS) reuse became popular in development

• Dependencies refer to a relationship where a component requires another component

• Tracking components dependencies also became important because…

3

Motivation

What is software dependency?

• Open-source software (OSS) reuse became popular in development

• Dependencies refer to a relationship where a component requires another component

• Tracking components dependencies also became important because…

(1) Dependency can be used for security threats management by exploitability triage

(2) Precise dependency can be used to provide supply chain transparency

4

Motivation

What is software dependency?

• Open-source software (OSS) reuse became popular in development

• Dependencies refer to a relationship where a software requires other reused software

• Tracking component dependencies also became important because of…
(1) Dependency can be used for security threats management by exploitability triage

(2) Precise dependency can be used to provide supply chain transparency

5

zlib@zlib

zlib@zlibWrapper

libunwindsnappy

MongoDB

Dependency

Motivation

Why it is difficult?

• Package manager provides useful meta-data

6

Motivation

Why it is difficult?

• Package manager provides useful meta-data

• What if meta-data does not exist?

• Developers sometimes get components by code-clone (copy-paste)

7

Motivation

• There are two ways to reuse components with the code-clone method

1) Developer can clone function directly into developers' file

2) Developer can clone part of components and reuse them as a library

8

c-ares Curl

Code reuse

grpc Protobuf

Library reuse

Motivation

Challenge 1: Indistinguishable files

• Files that are unclear whether reused or not

• Unidentified reused files may lead to unidentified dependencies
• e.g., single-lined function, implementation of the cryptographic function

Component {/}

Unnoted
Dependency!

Unclear
Reused Files zlib@zlib

zlib@zlibWrapper

libunwindsnappy

MongoDB

Dependency
Missing Dependencies

Motivation

Challenge 2: Duplicated component
• The same component can be cloned in the target software multiple times

• Incorrectly distinguished components may lead to misidentified dependencies

10

Component

{/}Misidentified
Dependency!

Reused from
zlib@zlibWrrapper

Duplicated Components!

{/} Reused from
zlib@zlib

zlib@zlib

zlib@zlibWrapper

libunwindsnappy

MongoDB

Dependency
Missing Dependencies

CNEPS: A Precise Approach for Examining Dependencies
among Third-Party C/C++ Open-Source Components

11

CNEPS

CNEPS (Component Dependencies Scanner)

• A novel approach to precisely identify dependencies between components

Background: Notations

12

f
Function

Declaration

f

Header File

{/} {/}

Declares

Source Files

Defines

Function
Definition

{/}
f

Module

{/}{/}

Module Granularity

Key idea: Module granularity dependency analysis

• Module can also explained as a set of files that are reusable as a library

• To reuse a component as a library, these files need to be cloned together

13

Imports Header
Component

{/}
f

Reused Module

{/}{/}

Overview of CNEPS

• CNEPS comprises three phases:

1. Module Construction

• Constructs modules for given input source code software

2. Dependency Analysis

• Analyzes dependencies using the module

3. Merging Components

• Merges components that are non-duplicates

14

Module Constructions

• Parses all functions declarations and definitions to reconstruct modules

P1. Module Construction

15

Definitions

ares.h with declarations

Declarations

ares_gethostbyaddr.c,
ares_timeout.c
ares_free_string.c

P2. Dependency Analysis

• Analyze dependencies using modules
(1) Reused by function cloning (code reuse)

• Examine other components (function) included in the module

(2) Reused by cloning and reused as a library (library reuse)
• Examine components that try to reuse other module (#include directives)

16

c-ares Curl

Code reuse

grpc Protobuf

Library reuse

P2. Dependency Analysis (cont.)

Dependency analysis with other granularities

• Missing dependency can be caused by indistinguishable files

17

Component

{/}

{/}

{/}

Depends on

Reused File

P2. Dependency Analysis (cont.)

Dependency analysis with other granularities

• Missing dependency can be caused by indistinguishable files

18

Component

{/}

{/}

{/}

Depends on

Reused File

Indistinguishable
file!

Missing

Dependency!

P2. Dependency Analysis (cont.)

Module Granularity

• We do not miss dependencies from reused indistinguishable files

19

Depends on
Component

{/}
f

Reused Module

{/}{/}

Indistinguishable
files!

P3. Merging Components

• CNEPS merges components that are cloned from the same project
(1) Which directory is the component cloned at? (cloned path)

(2) Who includes this component? (parent component)

(3) Is there a duplicated file? (the existence of the same files)

20

mongo/src/third_party/protobufmongo/src/third_party/grpc/dist/src

ProtobufProtobuf

P3. Merging Components

• CNEPS merges components that are cloned from the same project
(1) Which directory is the component cloned at? (cloned path)

(2) Who includes this component? (parent component)

(3) Is there a duplicated file? (the existence of the same files)

21

Protobuf Protobufgrpc

Library reuse

mongo/src/third_party/protobufmongo/src/third_party/grpc/dist/src

P3. Merging Components

• CNEPS merges components that are cloned from the same project
(1) Which directory is the component cloned at? (cloned path)

(2) Who includes this component? (parent component)

(3) Is there a duplicated file? (the existence of the same files)

22

Protobufgrpc Protobuf

node_generator.cc

THE SAME FILE!

mongo/src/third_party/protobufmongo/src/third_party/grpc/dist/src

Library reuse

Graph Output

23

grpc Protobuf

Library reuse

c-ares Curl

Code reuse

Library reuse

Protobuf

(cloned path: mongo/src/third_party/protobuf)

(cloned path: mongo/src/third_party/grpc/dist/src)

c-ares

grpc

Protobuf

Curl

Protobuf

MongoDB

Duplicated
components

Consolidated dependency graph

Evaluation

24

EVALUATION

Q1. Is really CNEPS performing? (Accuracy of CNEPS)

Dataset

• Top 100 C/C++ open-source software from GitHub
• Collected based on the number of stargazers

Comparison Target

• Centris (ICSE’21), an approach that detects reused components

• We advanced Centris to detect dependency between components

25

Woo, Seunghoon, et al. "CENTRIS: A precise and scalable approach for identifying modified open-source software reuse." 2021 ICSE

Accuracy of CNEPS

• (Metric) Examined Precision, Recall of the dependencies

• CNEPS outperformed existing approach with

89.9% Precision and 93.2% Recall

• Discovered around 2.2 times more correct dependencies

26

Approaches Identified Deps Precision Recall

Centris 219 63.5% 42.5%

CNEPS 480 89.9% 93.2%

Accuracy of CNEPS

• (1) Accuracy in identifying component of indistinguishable files

• (2) Accuracy in distinguishing duplicated components

27

#identified indist-
inguishable files

TP FP Precision

34,611 31,681 2,930 91.5%

All
Components

#identified Dupl-
icated Components

TP FP Precision

297 40 33 7 82.5%

Impact of CNEPS

Q2. Is really CNEPS useful? (Impact of CNEPS)

Dataset

• Collected 1,000 C/C++ OSS based on stargazers

• Examined the number of dependencies discovered when challenges are dealt

28

Impact of CNEPS

Q2. Is really CNEPS useful? (Impact of CNEPS)

Dataset

• Collected 1,000 C/C++ OSS based on stargazers

• Examined the number of dependencies discovered when challenges are dealt

29

672 Deps

Non-considered

Q2. Is really CNEPS useful? (Impact of CNEPS)

Dataset

• Collected 1,000 C/C++ OSS based on stargazers

• Examined the number of dependencies discovered when challenges are dealt

30

{/}

Indistinguishable
files

861 Deps,
+28%

672 Deps

Non-considered

Impact of CNEPS

Impact of CNEPS

Q2. Is really CNEPS useful? (Impact of CNEPS)

Dataset

• Collected 1,000 C/C++ OSS based on stargazers

• Examined the number of dependencies discovered when challenges are dealt

31

Duplicated
Components

Protobuf

Protobuf

919 Deps,
+36%

{/}

Indistinguishable
files

861 Deps,
+28%

672 Deps

Non-considered

Impact of CNEPS

Q2. Is really CNEPS useful? (Impact of CNEPS)

Dataset

• Collected 1,000 C/C++ OSS based on stargazers

• Examined the number of dependencies discovered when challenges are dealt

32

Duplicated
Components

Protobuf

Protobuf

919 Deps,
+36%

{/}

Indistinguishable
Files

861 Deps,
+28%

1179 Deps,
+75%

{/} Protobuf

Protobuf

Both

672 Deps

Non-considered

Impact of CNEPS

Distribution of dependencies

• CNEPS was able to examine 75% more dependencies!

33

57%

16%

21%

6%

Indistinguishable
files

Both challenges

Duplicated
components

Not related to
challenges

Conclusion

• We present CNEPS, a precise approach for dependency analysis with

accuracy of 89.9% precision and 93.2% recall

• CNEPS was able to examine 75% more dependencies by dealing with
indistinguishable files and duplicated components

• Equipped with CNEPS, developers can …

1) provide more precise software transparency (e.g., SBOM)

2) examine exploitability of vulnerabilities

34

Q&A

CNEPS Source code
• CNEPS repository: https://github.com/sodium49/CNEPS-public

Contact
• Email: nooryyaa@korea.ac.kr

• Computer & Communication Security Lab (https://ccs.korea.ac.kr)

• Software Security and Privacy Laboratory (https://ssp.korea.ac.kr)

• Center for Software Security and Assurance (https://cssa.korea.ac.kr)

35

https://github.com/sodium49/CNEPS-public
mailto:nooryyaa@korea.ac.kr
https://ccs.korea.ac.kr/
https://ssp.korea.ac.kr/
https://cssa.korea.ac.kr/

Appendix – scalability

• Elapsed time – lines of code

• Average 8.22s

36

Appendix – FPs and FNs

• FP: Indistinguishable file problem

• Because we generate module using Name of the function and declaration,
sometimes error occurs

• e.g., function with same name (memcpy)

• FP: Determining the exact module when there is a header with the same
name as a system library

• #include <string.h>

• FN: multiple header with the same name

• e.g., 10 headers with name <foo.h> within same path distance

37

Appendix – Advanced Centris

• Implemented with verification method Centris (ICSE’21) used

• In the following example, grpc depends on Protobuf

38

Protobufgrpc

Library reuse

mongo/src/third_party/grpc/dist/src

Appendix – Code Reuse Analysis

(1) Internal Reuse Analysis

• Count number of included components

• For example, in MongoDB, ares.h module contains…
• 23 c-ares

• 7 curl

• 34 indistinguishable files

➔This module is cloned from c-ares

• Indistinguishable files are also cloned from c-ares

39

c-ares Curl

Code reuse

Appendix – Library reuse analysis

(2) Library reuse analysis

• Examine functions reusing another component by importing header
• “#include” directive

• For example, in MongoDB, a module of a grpc was reusing protobuf

40

grpc Protobuf

Library reuse
// Generates Objective C gRPC service interface out of Protobuf IDL.

#include <memory>
#include <google/protobuf/compiler/objectivec/objectivec_helpers.h>

grpc importing protobuf!

Accuracy

• CNEPS outperformed existing approaches with
• 89.9% Precision

• 93.2% Recall

• Discovered around 2.2 times more correct dependencies

41

Appendix – indistinguishable files

Challenge 1: Indistinguishable files

• Files that are unclear whether reused or not

• Unidentified reused files may lead to unidentified dependencies
• e.g., single-lined function, implementation of the cryptographic function

• libcrypto, openssl, openssh, …

Code base {/}

Unnoted
Dependency!

Unclear
Reused Files

Motivation

Challenge 1: Indistinguishable files

• Files that are unclear whether reused or not

• Unidentified reused files may lead to unidentified dependencies
• e.g., single-lined function, implementation of the cryptographic function

43

#ifdef HAVE_LIBZ

#include "zlib.h"
#endif

#ifdef HAVE_LIBLZO2
#include "lzo/lzo1x.h"
#endif

Unnoted Reused File!

zlib@zlib

zlib@zlibWrapper

libunwindsnappy

MongoDB

Dependency
Missing Dependencies

