
CRYPTBARA:
Dependency-Guided Detection of

Python Cryptographic API Misuses
Seogyeong Cho, Seungeun Yu, Seunghoon Woo🧌

Korea University

ASE 2025

• Modern software relies on cryptography to protect

confidentiality, integrity, and authenticity

• Cryptography API misuse is a major source of security

vulnerabilities

Background
Why correct cryptography use matters

2

3

Background

Even if the API is used correctly, weak settings can still create vulnerabilities.

Real-World Example: Weak PBKDF2 Iterations

In Python, dynamic features make risky patterns more common and more subtle

Background
Why Python amplifies the risk

Dynamic features

• Object-dependent meaning

• Indirect construction

• Aliases/imports

4

Syntactic Ambiguity Semantic Ambiguity

Challenge

5

A. Context fragmentation
Params (key/IV/iterations) are built across helpers/returns

B. Context-dependent resolution
Same method name, different meaning by receiver type

Challenge
Syntactic Ambiguity

What you see at the call site ≠ the actual value or object

6

Syntactically fine, but safety depends on policy and intent

Challenge
Semantic Ambiguity

Unsafe if a default key is chosen at runtime

7

Motivation
Make LLMs see the context, not just the line

Context-aware JudgmentStructured
Dependency
Information

✔ Solves Syntactic Ambiguity

✔ Enables Semantic Judgment

8

LLMs alone can’t handle Python’s ambiguity 📉 accuracy drops

CRYPTBARA
Python CRYPTographic API misuse BARricAde

: Dependency-guided LLMs for precise Python crypto-API misuse detection

9

Design of CRYPTBARA
Dependency-guided LLM detection

Code
P1. Static dependency extraction

1. Intra-procedural analysis (CPG)

2. Inter-procedural analysis (AST)

P2. LLM-based misuse detection

Target code

Security rule

Dependency

Prompt
Chain-of-Thought prompting

GPT-4o-mini (no fine-tuning)
5× voting per instance

Context injection:
6 dependency facts

P1. Static dependency extraction

Inject static dependencies Report
Context-aware Judgment

1. Intra-procedural analysis
• Receiver object
• Return value
• Call hierarchy

2. Inter-procedural analysis
• Parameter propagation
• Constant usage
• Call chain

P1. Static Dependency Analysis
Extract the facts LLM needs: who calls what, with which values, and where they come/go

Dependency
information

11

P1-1. Intra-procedural analysis
Inside a function: receiver, return, call order

Item Description How it’s traced
Receiver object Object that calls the API CPG backward slice

Return value Variable holding API output CPG forward slice (1 hop)
Call hierarchy Who calls this API function Intra-procedural call scan

12

P1-1. Intra-procedural analysis
Inside a function: receiver, return, call order

1. Receiver object : identify the object that calls the API

• How: CPG backward slice to the constructor/assignment

Which object is initialized?

13

P1-1. Intra-procedural analysis
Inside a function: receiver, return, call order

2. Return value: capture the output variable and its next hop

• How: CPG forward slice (1 hop) to {return | store | arg}

Which value is returned?

14

3. Call hierarchy: list direct callers of this function

• How: intra-procedural call scan (caller → callee)

P1-1. Intra-procedural analysis
Inside a function: receiver, return, call order

Which function calls this?

15

Across functions: parameters, constants, call paths

P1-2. Inter-procedural analysis

Item Description How it’s traced

Parameter propagation Cross-function value flow AST backtrace
(follow caller→callee)

Constant usage Hard-coded literals AST literal scan → find literals →
bind to arg → tag role & location

Call chain End-to-end callers to API Call-graph expansion
(entry→API)

16

Across functions: parameters, constants, call paths

P1-2. Inter-procedural analysis

1. Parameter propagation: identify how security-sensitive values travel across
functions

• How: AST back-trace at each call site, then follow caller→callee links to rebuild the
cross-function flows

Which value flows across functions?

17

Across functions: parameters, constants, call paths

P1-2. Inter-procedural analysis

2. Constant usage: detect hardcoded literals used as crypto API arguments
• How: AST literal scan at call sites → find literals → bind each to the reached API arg

→ tag role & location

Which constant is used?

18

Across functions: parameters, constants, call paths

P1-2. Inter-procedural analysis

3. Call chain: enumerate end-to-end callers that trigger the crypto API
• How: build a call graph from caller→callee pairs and expand recursively from entry

points to the API site

Which path leads to the API call?

19

P2. LLM-based Detection
Rule-scoped, dependency-guided LLM judging

• We use structured rules + static dependencies to bound the LLM’s reasoning

• Inputs = (target code, selected rule, dependencies) → Output = JSON verdict

• Per-rule decision only (no out-of-scope critiques)

Input

Target code

Security rule

Dependencies

Output

Misuse or Safe
(JSON Verdict)

20

Rule

21

Accuracy: How precise is CRYPTBARA?

• Compare against LICMA and Cryptolation.

Benchmarks : PyCryptoBench, Real-world set

• CRYPTBARA outperformed prior tools
• Outperformed prior tools: 95.43% F1 on PyCryptoBench

• State-of-the-art on real code: 84.00% F1 on real-world set

Evaluation

22

• PyCryptoBench (public benchmark; labeled crypto snippets)

• Real-world set (curated real code; commit-level ground truth)

Effectiveness: What makes CRYPTBARA accurate?

1. Prompt Design Comparison 2. LLM Backend Comparison

Rules + Dependency Facts + CoT prompting + GPT-4o-mini = 95.4% F1

Evaluation

23

Evaluation
Practicality: Can CRYPTBARA detect real-world threats?

• Scope = GitHub repos (★ ≥ 5,000)

• Findings = 172 potential misuses across 34 repos

• Reporting = 22 cases reported

→ 4 fixed, 11 in discussion, 7 low-risk (won’t fix) (as of Aug 2025)

24

• Python crypto API misuse is context-dependent

• CRYPTBARA

• A hybrid approach: Static Dependency Analysis + LLM reasoning with rule-guided

prompts

• Turns raw code into structured context so the LLM can judge usage accurately

• Effectiveness

• Outperforms state-of-the-art detectors in our evaluation

• 172 previously unknown misuses discovered; 22 cases confirmed by developers

• CRYPTBARA helps ensure the secure and correct use of cryptographic libraries in Python

Conclusion

25

Thank you!

Contact 🧌
Seogyeong Cho jsg8777@korea.ac.kr

Software Security and Privacy Lab https://ssp.korea.ac.kr/

mailto:jsg8777@korea.ac.kr
https://ssp.korea.ac.kr/

