KOREA EEELAB GeorglaDﬁJQﬁuﬁgﬁ@

&) UNIVERSITY \°°?zﬂzinf;i°:;f3f:;;? ;;;; o Techmelogy

CENTRIS: A Precise and Scalable Approach for
Identifying Modified Open-Source Software Reuse

43rd International Conference on Software Engineering

Seunghoon Woo*, Sunghan Park*, Seulbae Kim T, Heejo Lee*, Hakjoo Oh*

*Korea University, TGeorgia Institute of Technology

ICSE 2021

Computer & Communication Security Lab, Korea University

GOAL

 Identifying Open-source software (OSS) components in the target software

* Motivation
* Open-source software is reused extensively in software development

* Reusing OSS without proper management

~ Vulnerability propagation
—~ License violation

= Supply chain attack

Computer & Communication Security Lab, Korea University

CHALLENGES

* Previous approaches cannot precisely identify OSS components

* Modified OSS reuse
* The cause of false negatives in component identification

* Nested OSS components
» The cause of false positives in component identification

Computer & Communication Security Lab, Korea University

CHALLENGES

e Modified OSS reuse

* Modified reuse patterns

Partial reuse, structure-changed reuse, code-changed reuse

Zlib (v1.2.3)

)

Linux kernel

Linux kernel

PARTIAL REUSE

Zlib

inflate.c
pyrigl
* Based

Computer & Communication Security Lab, Korea University

1995-2885 Mark Adler

stribution and use, s£& Cop

-ig

h 1.2.3 but modified for the Linux Ker

ht

nel

notice in

by

e

zl

ib.

CHALLENGES

e Modified OSS reuse

* Modified reuse patterns

 Partial reuse, structure-changed reuse, code-changed reuse

Zlib (v1.2.3)

)

Linux kernel

PARTIAL REUSE

Linux kernel

Zlib

Computer & Communication Security Lab, Korea University

Simple threshold-
based approach

¥

Many
false negatives

CHALLENGES

* Nested components

PHP

PHP
@) MongoDB

Computer & Communication Security Lab, Korea University

CHALLENGES

* Nested components

PHP

Correct answers

* PHP reuses PCRE
 MongoDB reuses PCRE

Wrong answers
* MongoDB reuses PHP

* PHP reuses MongoDB

Computer & Communication Security Lab, Korea University

CHALLENGES

* Nested components

PHP Existin.g. software |
composition analysis

PHP approaches
@) MongoDB '

Many
false positives

PCRE

Computer & Communication Security Lab, Korea University

CENTRIS

* CENTRIfuge for Software
 The first approach to precisely and scalably identify modified OSS components

» Key techniques

S1. Redundancy elimination

* For high scalability

S2. Code segmentation

* For high accuracy

Computer & Communication Security Lab, Korea University

S1.Redundancy elimination

4) 4) 4)
function I function J function [
—> —> —>
function k function k function k
Version 1 Version 2 Version 3

Version update in an OSS

Computer & Communication Security Lab, Korea University

S1.Redundancy elimination

Version 1 function i function k

—
Version 2 function j function k

0SS | —= —
Version 3 function | function k

“—

A naively generated OSS signature

function k | : compared 3+ times

Computer & Communication Security Lab, Korea University

S1.Redundancy elimination

Version 1 function i function k

—
Version 2 function j function k

0SS | —= —
Version 3 function | function k

“—

A naively generated OSS signature

: [version 1]

function i

function j | : [version 2]

[
[

‘ OSS ‘-< function [| : [version 3]
[

: [version 1, version 2, version 3]

function k

“—

A redundancy eliminated signature for an OSS v

Computer & Communication Security Lab, Korea University

S1.Redundancy elimination

Version 1 function i function k

—
Version 2 function j function k

0SS | —= —
Version 3 function | function k

“—

A naively generated OSS signature

Eomponent DB

: [version 1]

function i

function j | : [version 2]

[
. [

‘ OSS ‘-< function [| : [version 3]
[

: [version 1, version 2, version 3]

function k

“—

A redundancy eliminated signature for an 0SS

Computer & Communication Security Lab, Korea University

S52. Code segmentation

0SS

Application
code

Borrowed
code

The unique part of the software Non-unique part of the software
* Non-reused code parts * Reused code parts
* Self-developed code * Cause of false alarms

Computer & Communication Security Lab, Korea University

S52. Code segmentation

Code
segmentation

Computer & Communication Security Lab, Korea University

S52. Code segmentation

* How to segment an OSS?

Emponent g

l : l All other OSS
OSS (S) OSS (L)
0SS

OSS

Computer & Communication Security Lab, Korea University

S52. Code segmentation

* Detecting functions belonging to the borrowed code part of S

OSS (S)

OSS (L)

Birth date of f/in S

‘. >
» ‘ f Borrowed code part of S
—_— >

Birth date of fin L 11

Computer & Communication Security Lab, Korea University

S52. Code segmentation

* Detecting functions belonging to the borrowed code part of S

S L

G ={f|(f € (SNL)) A(birth(f,L) < birth (f,5))}

Computer & Communication Security Lab, Korea University

S52. Code segmentation

1) Measure similarity between S and L
G|

L]

Computer & Communication Security Lab, Korea University

S52. Code segmentation

1) Measure similarity between S and L
G|

L]

2) Check whether Gis included in the borrowed code part of S
S S L

If = 6 then:
= =N or

Computer & Communication Security Lab, Korea University

S52. Code segmentation

1) Measure similarity between S and L
G|

L]

2) Check whether Gis included in the borrowed code part of S
S S L

If = 6 then:
= =N or

3) Remove G from S
S=(S\Q)

Computer & Communication Security Lab, Korea University

S52. Code segmentation

1) Measure similarity between S and L
G|

L]

2) Check whether Gis included in the borrowed code part of S
S S L

If = 6 then: or Repeat this process for all

OSS in the component DB

3) Remove G fromS => Only the application
S=(S\QG) code of S remains

Computer & Communication Security Lab, Korea University

Component identification in the target software

 Comparing T with the application code part of the collected OSS

Target Application
Software (T) code of OSS

IT NS,
|Sal

®(T,S) =

=>if ®(T,S) = 0,then Sis the componentof T

Computer & Communication Security Lab, Korea University

EVALUATION

* Dataset
* Popular C/C++ OSS projects from () GitHub (April, 2020)
e #Stars >=100
 Atotal of 10,241 projects, 229,326 versions, and 80 billion lines of code (LoC)

e Parameter
e 9=0.1

Computer & Communication Security Lab, Korea University

EVALUATION
- 1) Accuracy A
* Cross-comparison experiments (10,241 vs 10,241)
* 91% precision and 94% recall
N * Modified components account for 95% of the detected components!)

Computer & Communication Security Lab, Korea University

EVALUATION
e ™
1) Accuracy
* Cross-comparison experiments (10,241 vs 10,241)
* 91% precision and 94% recall
N * Modified components account for 95% of the detected components!)
4)
2) Scalability
800 [SourcererCC O--O CeNtRis (first exp.) @—@ CENTRIS (n" exp.)
A The limitation of |
E 600 SourcererCC =% 9f.8 hours
é 400 due to memory error (first exp.)
@ A minute
£ 200 0| ("exp)
1M 10M 100M 1B 58
_ Dataset (LoC))

Computer & Communication Security Lab, Korea University

EVALUATION
/ ™
1) Accuracy
* Cross-comparison experiments (10,241 vs 10,241)
* 91% precision and 94% recall
N * Modified components account for 95% of the detected components!)
4)
2) Scalability
800 [SourcererCC O--O CeNtRis (first exp.) @—@ CENTRIS (n" exp.)
A The limitation of |
E 600 SourcererCC = 98 hours
£ 400 due to memory error (first exp.)
o A minute
£ 200 0| ("exp)
1M 10M 100M 1B 58
_ Dataset (LoC))
e N
3) Identification speed
L Takes < 1 min to identify components in the 1 M LoC target software

15

Computer & Communication Security Lab, Korea University

EVALUATION
e N/ .)
1) Accuracy 4) vs. DejaVu (OOPSLA 2017)
* Cross-comparison experiments (10,241 vs 10,241) Code-dulication detection too|
. . * Code-duplication detection too
* 91% precision and 94% recall . P
N * Modified components account for 95% of the detected components!)| * Using four target software programs
- ~| * DejaVushowed only 10% precision
2) Scalability
800 3 SourcererCC OO CENTRI-S |_[firf_-‘.t exp.) .—l:.'CENTRIS (n™h exp.) [Dejavu CENTRIS
3 600 b B 98 hours
= 400 due to memory error (first exp.) —
= o0 Ao Precision 10% 95%
E o) mexp)
0 0 O | e ¢— Recall 40% 100%
1M 10M 100M 1B 58
\ Dataset (LoC))
e N
3) Identification speed
o J
L Takes < 1 min to identify components in the 1 M LoC target software 15

Computer & Communication Security Lab, Korea University

CONCLUSION

* 95% of detected components were reused with modification
* Modified components, not likely to be identified, have more chances to pose security threats
* Management for supply chains considering modified components is required

* CENTRIS can be the first step towards addressing problems arising from
unmanaged OSS components in practice

» With the information provided by CENTRIS, developers can mitigate security threats
* e.g. they can update old-and-vulnerable components

Computer & Communication Security Lab, Korea University

Q&A

Thank you for your attention!

* CENTRIS repository (https://github.com/wooseunghoon/Centris-public)
* CENTRIS at loTcube (https://iotcube.net/Centris)

CONTACT

* Seunghoon Woo (seunghoonwoo@korea.ac.kr, https://wooseunghoon.github.io)

* Computer & Communication Security Lab (https://ccs.korea.ac.kr)

 Center for Software Security and Assurance (https://cssa.korea.ac.kr)

Computer & Communication Security Lab, Korea University

https://github.com/wooseunghoon/Centris-public
https://iotcube.net/Centris
mailto:seunghoonwoo@korea.ac.kr
https://wooseunghoon.github.io/
https://ccs.korea.ac.kr/
https://cssa.korea.ac.kr/

