L2Fuzz: Discovering Bluetooth L2CAP Vulnerabilities
Using Stateful Fuzz Testing

52nd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN'22)

Haram Park
Carlos Kayembe Nkuba
Seunghoon Woo
Heejo Lee

Computer & Communication Security Laboratory, Korea University

= | OREA

85/ UNIVERSITY

Computer & Communication Security Laboratory, Korea University

Background

« Bluetooth Basic Rate/Enhanced Data Rate (BT Classic)

1) Wireless communication technology which is adopted by billions of devices.
- A vulnerability can attack billions of devices.

2) To use Bluetooth application, a L2ZCAP connection between devices is needed.
- Using L2CAP vulnerability, critical attacks are possible.

User { Bluetooth Application
Serial Port Profile (SPP) / Application Interface
[Object Exchange (OBEX)] . . A
Host - _ Service Discovery
(SW) — Radio Frequency Protocol (SDP)
[Communications (RFCOMM) y
Logical Link Control and Adaption Protocol (L2CAP)
——————— Host Controller Interface (HCl) ——————-
Controller | | Link Manager Protocol (LMP)
(FW) BR/EDR Physical Layer

Computer & Communication Security Laboratory, Korea University

Challenge for fuzzing: Increasing the L2CAP state coverage

 Bluetooth L2CAP follows a specific state machine.

 Vulnerabilities are highly likely to occur in
1) the state transition process

2) the functions of each state

- We need to test as many states as possible.

Computer & Communication Security Laboratory, Korea University

RSP

W,
CONNECT
WAIT SEND () WAIT CONFIG
CONFIG O REQ RSP
”‘_ FINAL RSP

CONTROL
°
FINAL RSP
)
WAIT WAIT
CONFIRM MOVE
ONFIR

Tie o)
=

Challenge for fuzzing: Generating valid malformed packets

 Payload can have multiple Data Fields depending on the command code.

1 byte 2 bytes 1 byte 2 bytes (8 + n) bytes
HCI Packet | Type | Connection Handle | Flag | L2ZCAP Length L2CAP
T o bytes Jbytes (4 +n) bytes |
L2CAP Header Payload Length Header Channel ID Payload
B 1 bytelbyteZbytes n bytes i
*L2CAP Payload Code Identifier Data Length Data Fields
T nbytes i
Data Fields| Data Field A | Data Field B | Data Field C

. _*LZCAP Payload can be up to 65,535 bytes.)
- Mutating any or all tields causes packet rejection by the target devices.

- We need effective mutating to avoid packet rejection and discover the vulner
abilities.

Computer & Communication Security Laboratory, Korea University

Motivating Example

« BlueBorne Attack (CVE-2017-1000251)
- RCE attack through L2CAP vulnerability.

Attzker

Connection Request (PSM : SDP)

»
p Connection Response - Success
Configuration Request
<
Configuration Request >

Malformed Configuration Response - Pending

<

Configuration Response

State transition

without pairing
(CLOSED -»> WAIT CONFIG)

.

Unbuntu PC

BlueBorne
triggered

Computer & Communication Security Laboratory, Korea University

L2Fuzz

« Stateful fuzzer for detecting Bluetooth L2CAP vulnerabilities

Run — Input/Output

v --> Workflow

Key techniques (1) Target

Scanning MAC address

v

v’ State GUldlng __________ > (2) State Normal Packets Target
. idi (for state transition) .

- To increase state coverage Guiding Device

[=
Commands i Zﬂ%kfg E <E| D
Bluetooth

v Core Field MUtating E \ (3) Core Field |Malformed Packets

Dongle

- To generate malformed packets Mutating | (forfuzzing test
that are less likely to be rejected

A4
i Next state ((4) Vulnerability < Response packets
Detecting
Vv
Logfile |

Computer & Communication Security Laboratory, Korea University

Process 1: Target Scanning

« Scanning the target device’s information
1) MAC address : to establish L2ZCAP socket.

2) Service ports : to test the port that does not require pairing.

a. attackers often exploit without pairing (e.g., BlueBorne)
b. fuzzing after pairing is meaningless (appropriate privilege escalation)

c. for ports that require pairing, sending test packets without pairing causes
the device to reject packets

Computer & Communication Security Laboratory, Korea University

Process 2: State Guiding

- State Classification.
1) Clustering states into “Job” based on the event functions and action.

ex) WAIT CONNECT : Connection Request (event), Connection (functions), Connection Response (action)

WAIT CONNECT RSP : Connection Response (event), Connection (functions), Configuration Request (action)
WAIT CONNECT and WAIT CONNECT RSP = states related to “Connection Job”

Job States
_____ Closed _____{CLOSED} ..
___Connection ___{WAIT CONNECT, WAIT CONNECT RSP}
Creation {WAIT CREATE, WAIT CREATE RSP}

{WAIT CONFIG, WAIT CONFIG RSP,
Configuration WAIT CONFIG REQ, WAIT CONFIG REQ RSP,

WAIT SEND CONFIG, WAIT IND FINAL RSP,

WAIT FINAL RSP, WAIT CONTROL IND}

Move {WAIT MOVE, WAIT MOVE RSP,
L WAIT MOVE CONFIRM, WAIT CONFIRM RSP}
Open {OPEN}

Computer & Communication Security Laboratory, Korea University

Process 2: State Guiding(Cont.)

« State Classification.

2) Identifying the commands used for each Job.
ex) WAIT CONNECT accepts Connection Request.
WAIT CONNECT RSP accepts Connection Response.
Connection Request and Connection Response - Valid commands for Connection Job

Event Action State transition?
Connect Req Connect Rsp WAIT CONFIG
Connect Rsp Reject No
Config Req Reject No
Config Rsp Reject No
Disconnect Rsp Reject No
Create Channel Req Reject No
Create Channel Rsp Reject No
Move Channel Req Reject No
Move Channel Rsp Reject No
Move Channel Confirm Req Reject No
Move Channel Confirm Rsp Reject No

ex) WAIT CONNECT state’s events and actions.

Computer & Communication Security Laboratory, Korea University

Process 2: State Guiding(Cont.)

- State Classification.
3) Mapping the valid commands to each job

Job Valid commands
. Uosed _Allcommands
. Lomnection _____Comnmect Req/Rsp .
______ Creation ___ Create Channel Req/Rsp
___Configuration __ ConfigReq/Rsp
___Disconnection _____ Disconnect Req/Rsp
Move Move Channel Req/Rsp,

Move Channel Confirmation Req/Rsp

Open All commands

- State transition.
- With the valid commands, L2Fuzz generates normal packet for state transition.

Computer & Communication Security Laboratory, Korea University

Process 3: Core Field Mutating

 Field Classification.
1) Segmenting L2ZCAP(L) into fixed(F), dependent(D), and mutable fields(M).

L=FUDUM

CIassn‘yln]g mutable fields(M) into mutable core fields(Mc) and mutable
application tields(Ma).

M =M~U My

Computer & Communication Security Laboratory, Korea University

Process 3: Core Field Mutating(Cont.)

* Field Classification.
3) Applying to Bluetooth L2CAP Packet frame.

D F D D D M
L2CAP(L) : | PAYLOAD LEN | HEADER CID | CODE | ID | DATA LEN DATA

PSM

REASON | RESULT | STATUS | FLAGS TYPE
INTERVAL || LATENCY || TIMEOUT || SPSM MTU

CREDIT MPS OPT QoS

DATA field candidates

Computer & Communication Security Laboratory, Korea University

Process 3: Core Field Mutating(Cont.)

 Packet mutating.

1) No mutating : fixed(F), dependent(D).

2) Mutating : mutable core fields(Mc).

3) Default value : mutable application fields(Ma).
4) Adding garbage value.

D F D D D Mc Ma Ma
P-LEN H-CID CODE ID DATALEN DCID FLAGS MTU
0OCo00 0100 04 0O6 0800 4000 0020 01020004

0OCO0O 0100 04 O6 0800 8F/B 0000 00000000 D23A910E

\ J \ oo J | /

No muTtating Mut::lting Default Value Garbaée Value

Computer & Communication Security Laboratory, Korea University

Process 4: Vulnerability detecting

« Analyzing Target Device.

1) Error message
v’ Connection Failed, Connection Aborted, Connection Reset Connection Refused, and Timeout

2) Ping test
v" Whether the target device is responding.

3) Crash dump

v" Whether the crash dump was generated in the target device.

Computer & Communication Security Laboratory, Korea University

Evaluation

- Experimental Setup.

M pgthOﬂw @ Ubuntu 18.04

€ Bluetooth’ Billioimtain

« Baseline Fuzzers for comparison.

Defensics Bluetooth Stack Smasher bfuzz
Synopsys SecuObs loTcube

Computer & Communication Security Laboratory, Korea University

Evaluation(Cont.)

 Target devices.

v" Testing 4 main general-purpose Bluetooth host stacks.
1) Android BlueDroid

2) Linux BlueZ

3) Apple Bluetooth stack

4) Windows Bluetooth stack

No. Type Vendor Name Year DModel Chip OS or FW BT Stack BT Ver
D1 Tablet PC Google Nexus 7 2013 ASUS-1A005A Snapdragon 600 Android 6.0.1 BlueDroid 4.0 + LE
D2 Smartphone Google Pixel 3 2018 GAO0464 Snapdragon 845 Android 11.0.1 BlueDroid 50+ LE
D3 Smartphone Samsung Galaxy 7 2016 SM-G930L Exynos 8890 Android 8.0.0 BlueDroid 42
D4 Smartphone Apple iPhone 68 2015 A1688 A9 iOS 15.0.2 iOS stack 4.2
D5 Earphone Apple Airpods 1 gen 2016 A1523 Wi 6.8.8 RTKit stack 42
D6 Earphone Samsung Galaxy Buds+ 2020 SM-R175NZKATUR BCM43015 RI75XXUOAUGI BTW 5.0 + LE
D7 Laptop LG Gram 2019 15ZD990-VX50K Intel wireless BT Windows 10 Windows stack 5.0
D8 Laptop LG Gram 2017 15Z2D970-GX355K Intel wireless BT Ubuntu 18.04.4 BlueZ 5.0

Computer & Communication Security Laboratory, Korea University

Evaluation(Cont.)

 Evaluation Metrics.

1) Mutation efficiency

» Minimum percentage of malformed packets transmitted without rejection.
* It uses Malformed Packet Ratio and Packet Rejection Ratio.

Mutation efficiency = MP Ratio * (1 — PR Ratio)

» Malformed Packet Ratio > Packet Rejection Ratio
VP Ratio — #Transmitted Malformed Packets PR Ratio — #Received Rejection Packets from Target
#Transmitted Packets #Received Packets from Target

2) State Coverage.
> the number of L2CAP states to be covered.

Computer & Communication Security Laboratory, Korea University

Mutation efficiency

- L2Fuzz shows the highest mutation efficiency.

Fuzzer MP Ratio PR Ratio Mutation efficiency

L2Fuzz 69.96% 32.49% 47.22%

Defensics 2.38% 1.73% 2.33%

BFuzz 1.50% 91.60% 0.12%
BSS 0% 0% 0%

*MP Ratio = Malformed Packet Ratio
*PR Ratio = Packet Rejection Ratio
*Mutation efficiency = MP Ratio * (1 - PR Ratio)

<Mutation efficiency results>

100000 100000

10000 10000

1000 1000

#Transmitted
Malformed Packets
#Received Rejection
Packets from Target

100 =X L2Fuzz 100 = L2Fuzz
0 1 A—A Defensics 0 A—A Defensics
' *BSS did not generate malformed packets. BFuzz | *BSS did not receive any rejection packets. BFuzz
1 led)y 1 1
(0g scale 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 (lOg scaled) 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
#Transmitted Packets #Received Packets from Target
<MP Ratio measurement results> <PR Ratio measurement results>

Computer & Communication Security Laboratory, Korea University

State Coverage

L2Fuzz
Defensics
BFuzz
BSS

13

7

6

(b) Defensics

Computer & Communication Security Laboratory, Korea University

Vulnerability Detection Results

* L2Fuzz detected five zero-day vulnerabilities.

1) Nexus 7, Pixel 3, Galaxy 7 (Android): reported and discussing patch.
2) Airpods 1 gen (Apple’s stack): reported and patched.

3) LG Gram (Ubuntu) : reported.

pe Vendor Name Vuln? Description Elapsed Time Reported to Vendors?
Tablet PC Google Nexus 7 Yes DoS 1 m32s Yes
Smartphone Google Pixel 3 Yes DoS 1 m25s Yes
Smartphone Samsung Galaxy 7 Yes DoS 7mll s Yes
Smartphone Apple iPhone 6S No N/A N/A N/A
Earphone Apple Airpods 1 gen Yes Crash 40 s Yes
Earphone Samsung Galaxy Buds+ No N/A N/A N/A
Laptop LG Gram No N/A N/A N/A

Laptop LG Gram Yes Crash 2 h 40 m Discussing

Computer & Communication Security Laboratory, Korea University

Case Study: DoS in Android Bluetooth

« Remote temporary device denial of service.

"cmd": "Configuration Request",

“cmd code": 4,

“raw": "b'\\x04\\x00\\x04\\x00\\xbbY\\x00\\x00"'",

“summary": "<bound method Packet.summary of

<L2CAP CmdHdr code=conf req |<L2CAP ConfReq dcid=22971 |>>>",

Unfortunately, Bluetooth Share has
stopped.

Bluetooth keeps stopping

REPORT OK

(@ Appinfo

< Bluetooth SCAN

"state": "Wait Send Config State”,
"sended?": "no",

“crash": "yes",

"crash info": "TimeoutError"

X

m ON Bluetooth pairing request &

15 Bluetooth d Enter PIN to pair with ubuntu (Try 0000 or 1234).

<L2Fuzz logfile>

PAIRED DEVICES Bluetooth has stopped.

/a0

@9»/ Kelly X Close app ©

A0

(H8) 7 3
CANCEL &

\/Qg\ AirPnde s

<DosS triggered in Android phones>

Computer & Communication Security Laboratory, Korea University

Case Study: DoS in Android Bluetooth(Cont.)

« Remote temporary device denial of service.

dodkok dokok skokok skokok dkokok skokok dkokk kokck kokok kokok ckokok ckokok kokok kokok kokok kokok

Build fingerprint:
'google/blueline/blueline:11/RQ1D.210105.003/7005430:user/release-keys'
Revision: 'MP1.0'

ABI: 'arm64'

Timestamp: 2021-07-07 15:16:25+0900

pid: 1948, tid: 2946, name: bt_main_thread >>> com.android.bluetooth <<<
uid: 1002

signal 11 (SIGSEGV), code 1 (SEGV_MAPERR), fault addr 0x20

Cause: null pointer dereference

backtrace:

#00 pc 0000000000378da0 /system/lib64/libbluetooth.so
(I2c_csm_execute(t_|2c_ccb*, unsigned short, void*)+3748) (Buildid:
3178e5a1f58c0a343c0d83be72d223da)

<ADB logfile — Google Pixel 3>

CLOSED
@ State
<=___Transition
WAIT _
& CONNECT
@ Malf d > WAIT
alforme
Packets ® CREATE

WAIT Ui $ RSP
CONNECT
/—/ .
/(WAIT SEND WAIT CONFIG
f = CONFIG O REQ RSP
® DoS e ‘ WAIT
"Comen g~ ' TR

CONTROL
A
FINAL RSP
C)
WAIT WAIT WAIT
CONFIRM MOVE .-

RSP RSP ONFIR

Computer & Communication Security Laboratory, Korea University

Discussion

 Applicability to other protocols.
- RFCOMM, SDP, and OBEX

» Countermeasures.
- Vendors are encouraged to update L2CAP layer.

 Limitations and future works.
- Cannot test long-term.
- Hard to analyze root cause immediately.
- Cannot evaluate code coverage; because of closed-sources.
- Cannot cover whole states.

* Responsible vulnerability disclosure.
- All vulnerabilities are reported.
- Several vulnerabilities are not disclosed due to the vendor’s rejection.

Computer & Communication Security Laboratory, Korea University

Conclusion

- We present L2Fuzz, a stateful fuzzer for detecting Bluetooth L2CAP
vulnerabilities.

By State Guiding and Core Field Mutating, L2Fuzz can effectively detect
vulnerabilities.

« With L2Fuzz, Developers can prevent risks in the Bluetooth host stack.

Computer & Communication Security Laboratory, Korea University

Q&A

- Thanks for your attention.
L2Fuzz source code repository is (https://github.com/haramel/L2Fuzz).

L2Fuzz will be available at (https://iotcube.net) as a part of BFuzz.

Contact
Haram Park (freehr94@korea.ac.kr)
Computer & Communication Security Lab (https://ccs.korea.ac.kr)

v KOREA

UNIVERSITY

§EE5LAB

Computer & Communicati
rrrrrrrrrrrrr

’/~

Computer & Communication Security Laboratory, Korea University

https://github.com/haramel/L2Fuzz
https://iotcube.net/
mailto:freehr94@korea.ac.kr
https://ccs.korea.ac.kr/

