
Seunghoon Woo*, Dongwook Lee*, Sunghan Park*, Heejo Lee*, Sven Dietrich**

*Korea University, **City University of New York

USENIX security 2021

V0Finder: Discovering the Correct Origin of Publicly
Reported Software Vulnerabilities

Goal

Discovering the correct origin of publicly reported software vulnerabilities

• Vulnerability Zero (VZ)

• The software and its version where a vulnerability originated

• Motivation

• The incorrect VZ can cause several security problems

• To unintentionally overlook the propagated vulnerability

• To delay patch deployment

1

The VZ of CVE-2017-0700 is reported as Android

Motivating example: CVE-2017-0700

2<https://nvd.nist.gov/vuln/detail/CVE-2017-0700>

Motivating example: CVE-2017-0700

The correct VZ of CVE-2017-0700 is JPEG-compressor

3

Android

LibGDX

JPEG-compressor

Vulnerability

4

Developers reusing
vulnerable Android

Developers reusing
vulnerable JPEG-compressor

▶ Can easily resolve
the vulnerability

▶ Fail to detect and patch the
vulnerability in a timely manner

Motivating example: CVE-2017-0700

Uninterested
vulnerability!

5

Developers reusing
vulnerable Android

▶ Can easily resolve
the vulnerability

Motivating example: CVE-2017-0700

Developers reusing
vulnerable JPEG-compressor

▶ Fail to detect and patch the
vulnerability in a timely manner

Uninterested
vulnerability!

6

Developers reusing
vulnerable Android

Developers reusing
vulnerable JPEG-compressor

▶ Can easily resolve
the vulnerability

Motivating example: CVE-2017-0700

Successfully reproduced CVE-2017-0700 in
• JPEG-compressor
• Godot (reported -> patched)
• LibGDX (reported -> patched)

(this CVE exists in the latest version of 12 software!)

7

Motivating example: CVE-2017-0700

Discovering the correct VZ of a vulnerability in an automated way

• Input

• CVE-2017-0700 vulnerability (i.e., vulnerable function)

• Output

• JPEG-compressor (the correct VZ, not LibGDX and Android)

JPEG-compressor
(the correct VZ)

CVE-2017-0700
(vulnerable function)

Discovering
the correct VZ

8

1. VZ ≠ Vulnerable software with the earliest birth date!

2. Addressing the syntax variety of vulnerable code

Challenge

① VZ may not be the
vulnerable software with

the earliest birth date

② The syntax of a
vulnerable code

frequently changes

JPEG-compressor

Godot

LibGDX

…

Android

V0Finder

Vulnerability Zero Finder

• The first approach to discover the correct origin (VZ) of a vulnerability

• Key idea

• Using a graph-based approach instead of using timestamp-based metadata

• Generating a vulnerability propagation graph for each vulnerability

• Nodes: vulnerable software

• Edges: the propagation directions of the vulnerability

• Discovering the VZ  finding the root of the generated graph

9

V0Finder: Example of the generated graph

10

• Example vulnerability propagation graph (CVE-2017-0700)

V0Finder: Example of the generated graph

11

• Example vulnerability propagation graph (CVE-2017-0700)

① Detects vulnerable
software (nodes)

② Identifies propagation
directions (edges)

Detecting vulnerable software

12

Vulnerable
function

Software

All functions

Patch

Deleted lines

Inserted lines

CVE

h

Hash values

Locality
sensitive hashing

Locality
sensitive hashing

v

Hash value

Extracting functions and applying locality sensitive hashing

Using vulnerable code clone detection technique

13

If h

1. Is similar to v
2. Contains deleted lines
3. Does not contain inserted lines

Software is
vulnerable

Vulnerable
function

Software

All functions

CVE

h

Hash values

Locality
sensitive hashing

Locality
sensitive hashing

v

Hash value

Deleted lines

Inserted lines

Patch

Detecting vulnerable software

Identifying propagation directions

Focusing on a reuse relation

• Reuse relation between the vulnerable software pairs (S1, S2)

• Let a vulnerability be v

• If S1 reuses S2, and if S1 and S2 share the same vulnerability v

⇒ v propagated from S2 to S1

14

S1

S2 ⇒ S2 S1
v

v

Identifying reuse relations using three key factors

• V0Finder determines that S1 reuses S2 in the following three cases

1. [Source code] If S1 contains the entire codebase of S2

2. [Path information] If path(S1, a common file) ⊃ path(S2, a common file)

3. [Metadata files] If S1 contains a metadata file of S2

• README, LICENSE, and COPYING files located in the root path of S2

15

Identifying propagation directions

e.g.,

* If S1 reuses S2, then the vulnerability propagated from S2 to S1 (S2  S1)

Finding the root of the generated graph

16

Discovering the VZ by finding the root of the graph

Evaluation

Dataset collection

17

CVE pool

Software
pool

• 5,671 CVEs
• 3,246 CVEs from NVD (all C/C++ CVEs that provide their patch information)
• 2,425 CVEs from Issue trackers (Android, Chromium, Mozilla)

• 10,701 software programs
• Popular open-source software from GitHub (ranked by the number of stars)
• A total of 229,326 versions and 80 billion lines of code

Evaluation

Evaluation methodology

1) Discovering VZs for the collected 5,671 CVEs

2) Comparing the VZ discovery results of V0Finder using the CPEs

• Common Platform Enumeration (CPE)

• Provides vulnerable software name & version

18CPE of CVE-2017-0700
<https://nvd.nist.gov/vuln/detail/CVE-2017-0700>

Evaluation

VZ discovery results for the collected 5,671 CVEs

1. V0Finder successfully discovered the correct VZs for 5,410 CVEs (95%)

2. V0Finder further found that 96 CVEs with the incorrect VZ

19

Evaluation

VZ discovery results for the collected 5,671 CVEs

1. V0Finder successfully discovered the correct VZs for 5,410 CVEs (95%)

2. V0Finder further found that 96 CVEs with the incorrect VZ

3. Graphs with multiple roots or with no root

1) VZ does not exist in our dataset

2) V0Finder failed to identify reuse relations for some cases

20

Analyzing the impact of VZ discovery

1) Success rate of vulnerability detection VS. the correctness of VZ

2) Elapsed time for vulnerability detection VS. the correctness of VZ

Findings

21

latestinitial version i version i+1… …

VULNERABLE PATCHED!

Version update in a software program

PATCHED!

version 1

VULNERABLE

② Elapsed time for
vulnerability detection

① Success of
vulnerability

detection

The incorrect VZ prevents appropriate vulnerability detection

Success rate of vulnerability detection

22

CVEs with the correct VZ CVEs with the incorrect VZ

※We only consider the case where there is more than one node in the graph

85% (8,994) affected software
can detect and patch the vulnerability

36% (356) affected software
can detect and patch the vulnerability

3,068 CVEs 96 CVEs

10,523 affected software 1,000 affected software

Elapsed time for vulnerability detection

23

CVEs with the correct VZ CVEs with the incorrect VZ

308 days (average) 521 days (average)<<
200 days

Elapsed time for vulnerability detection in the affected software

Implications

24

The implications of correct VZ discovery

1. Some CVEs are reported with the incorrect VZ

• The incorrect VZ hinders detection and patching of propagated vulnerabilities

2. The correct VZ of a vulnerability enables developers to detect and patch

propagated vulnerabilities in a timely manner

3. The task of discovering the VZ should be automated and accurately

performed with a system such as V0Finder

Conclusion

25

• Quality control of vulnerability reports is an important issue

• The correctness of VZ has a significant impact on the appropriate
detecting and patching of propagated vulnerabilities

• We present V0Finder, for the first time, an approach to precisely
discover the correct VZ of software vulnerabilities

• Discovering VZs by generating vulnerability propagation graph

• Equipped with VZ discovery results from V0Finder

• Developers can address software vulnerabilities potentially contained
in their software due to vulnerable code reuse in a timely manner

Q&A

Thank you for your attention!
• V0Finder repository (https://github.com/wooseunghoon/V0Finder-public)

CONTACT

• Seunghoon Woo (seunghoonwoo@korea.ac.kr, https://wooseunghoon.github.io)

• Computer & Communication Security Lab (https://ccs.korea.ac.kr)

• Center for Software Security and Assurance (https://cssa.korea.ac.kr)

https://github.com/wooseunghoon/V0Finder-public
mailto:seunghoonwoo@korea.ac.kr
https://wooseunghoon.github.io/
https://ccs.korea.ac.kr/
https://cssa.korea.ac.kr/

