
Seunghoon Woo, Eunjin Choi, Heejo Lee, Hakjoo Oh

Korea University

USENIX Security 2023

V1SCAN: Discovering 1-day Vulnerabilities
in Reused C/C++ Open-source Software Components

Using Code Classification Techniques

Korea University
College of Informatics

1

Motivation

• Unmanaged OSS reuse can cause security threats

Open-source software (OSS), a driving force behind innovative software development

Target

program

A third-party

OSS component

Other third-party

OSS components

(sub-components)

Reuse Reuse

2

Motivation

• Unmanaged OSS reuse can cause security threats

Target

program

A third-party

OSS component

Other third-party

OSS components

(sub-components)

Q1. Do third-party OSS components contain vulnerabilities?

Open-source software (OSS), a driving force behind innovative software development

3

Motivation

• Unmanaged OSS reuse can cause security threats

Target

program

A third-party

OSS component

Other third-party

OSS components

(sub-components)

Q2. Do vulnerabilities in third-party components exist in the target program?

Open-source software (OSS), a driving force behind innovative software development

4

(1) Version-based approach

• Detecting vulnerabilities based on

the version information of

reused third-party OSS components

e.g., CENTRIS [ICSE ’21], OSSFP [ICSE ’23]

Two main approaches for 1-day vulnerability discovery in C/C++ software

Motivation

Target

program

Third-party

components

and versions

1-day

vulnerabilities

(2) Code-based approach

• Identifying codes syntactically or

semantically similar to vulnerable code

e.g., VUDDY [S&P ’17], MVP [SECURITY ’20],

MOVERY [SECURITY ’22]

Target

program

1-day

vulnerabilities
Known

vulnerable code

5

• Existing version-based approaches for C/C++ software

▪ Producing false positives

▪ Unused or resolved vulnerabilities cannot be addressed effectively

• Existing code-based approaches for C/C++ software

▪ Producing false negatives

▪ Vulnerabilities in modified code cannot be detected effectively

Addressing modified OSS reuse

Challenge

ReactOS
Libtirpc

(v0.1.11)
Reuse

• CVE-2018-14621
• CVE-2018-14622

• CVE-2017-8779

6

• Existing version-based approaches for C/C++ software

▪ Producing false positives

▪ Unused or resolved vulnerabilities cannot be addressed effectively

• Existing code-based approaches for C/C++ software

▪ Producing false negatives

▪ Vulnerabilities in modified code cannot be detected effectively

Challenge

ReactOS
Libtirpc

(v0.1.11)
Reuse

• CVE-2018-14621
• CVE-2018-14622

• CVE-2017-8779Fixed by
backporting

security patches!

Addressing modified OSS reuse

V1SCAN: Discovering 1-day Vulnerabilities

in Reused C/C++ Open-source Software Components

Using Code Classification Techniques

8

• A new way to combine improved version- and code-based approaches

▪ Key techniques: code classification techniques

An approach for the precise and comprehensive discovery of 1-day vulnerabilities

Design of V1SCAN

Improved version-

based approach

Improved code-

based approach

Complementing FNs

Filtering out FPs
Reused code

classification

Vulnerable code

classification

9

• Addressing false positives based on the reused code classification technique

Improved version-based approach

Design of V1SCAN

Target program

Exactly

reused

functions

Original OSS codebase

Modified

functions

Unused

functions

ReusedExactly

reused

functions

Modified

functions

OSS component

10

• Vulnerability detection

Improved version-based approach

Candidate

vulnerabilities

e.g., Common Platform

Enumeration (CPE) of NVD

Design of V1SCAN

Third-party

OSS components

and versions

Example CPE for CVE-2014-0160

11

Improved version-based approach

• Filtering FPs (: a vulnerable function of a detected vulnerability)

▪ is exactly reused in the target program

❖True vulnerability (no filtering is applied)

Design of V1SCAN

Exactly

reused

functions

OSS codebase

func

func

func

12

Improved version-based approach

• Filtering FPs (: a vulnerable function of a detected vulnerability)

▪ is not used in the target program

❖ Filtering out (i.e., false alarm)

Design of V1SCAN

OSS codebase

Unused

functions

func

func

func

func

13

Improved version-based approach

• Filtering FPs (: a vulnerable function of a detected vulnerability)

▪ is reused with code changes

❖Compare to the vulnerable and patched functions of the vulnerability

- is more similar with the patched function → Filtering out (e.g., backporting)

Design of V1SCAN

Modified

functions

func

func

func

func func

func

OSS codebase

14

• Addressing false negatives based on the vulnerable code classification technique

Improved code-based approach

Design of V1SCAN

Security

patch

Function Structure

Macro
(Global)

Variable

Concerns of existing

code-based approaches

Over 97% of the code repaired by security patches

was included in one of the four locations
()

15

• Signature generation

Improved code-based approach

Design of V1SCAN

Security patch

(e.g., CVE-2019-12904)

Vulnerability signature

16

• Vulnerability detection: macro and variable

▪ If the two conditions are satisfied, we conclude that 1-day vulnerabilities exist

Improved code-based approach

Design of V1SCAN

Target program

All code lines deleted in the patch

(- code lines)
All code lines added in the patch

(+ code lines)

17

• Vulnerability detection: function and structure

▪ We first verify whether a function (or structure) similar to the vulnerable function exist

▪ If the two conditions are satisfied, we conclude that 1-day vulnerabilities exist

Improved code-based approach

Design of V1SCAN

Target program

All code lines

deleted in the patch

(- code lines)

All code lines added in the patch

(+ code lines)

Similar function (structure)

18

• CVE dataset (collected from NVD)

▪ Vulnerable codes from 4,612 C/C++ security patches

❖Functions, structures, macros, and variables

• CPEs from all CVEs (as of August 2022)

• Target software dataset

▪ Collected from GitHub

▪ Popular, containing many OSS components

Dataset

Evaluation

19

• Comparison targets: V0Finder [Security ’21] and MOVERY [Security ’22]

▪ V1SCAN outperformed existing approaches

❖Discovered 50% more 1-day vulnerabilities than MOVERY

Accuracy measurement

Evaluation

20

• Comparison targets: CENTRIS [ICSE ’21] (version-based) and VUDDY [S&P ’17] (code-based)

▪ V1SCAN reduced false positive ratio of the version-based approach from 77% to 4%

▪ V1SCAN reduced false negative ratio of the code-based approach from 49% to 9%

Effectiveness

Evaluation

False positive ratio False negative ratio
0

0.2

0.4

0.6

0.8

1
Version-based

Code-based

V1SCAN

77%

38%

4%

49%

32%

9%

21

• 1-day vulnerabilities have various propagation patterns

▪ E.g., propagate with code modifications or resolved after propagation

• V1SCAN

▪ An effective approach for discovering 1-day vulnerabilities in third-party OSS components

▪ V1SCAN significantly outperformed existing approaches

❖High vulnerability detection accuracy: 96% precision and 91% recall

• Equipped with vulnerability discovery results from V1SCAN

▪ Developers can address threats caused by propagated vulnerabilities in OSS components

Conclusion

Conclusion

	기본 구역
	슬라이드 0: V1SCAN: Discovering 1-day Vulnerabilities in Reused C/C++ Open-source Software Components Using Code Classification Techniques
	슬라이드 1: Motivation
	슬라이드 2: Motivation
	슬라이드 3: Motivation
	슬라이드 4
	슬라이드 5
	슬라이드 6
	슬라이드 7
	슬라이드 8
	슬라이드 9
	슬라이드 10
	슬라이드 11
	슬라이드 12
	슬라이드 13
	슬라이드 14
	슬라이드 15
	슬라이드 16
	슬라이드 17
	슬라이드 18
	슬라이드 19
	슬라이드 20
	슬라이드 21

