V1SCAN: Discovering 1-day Vulnerabilities
in Reused C/C++ Open-source Software Components
Using Code Classification Techniques

Seunghoon Woo, Eunjin Choi, Heejo Lee, Hakjoo Oh

Korea University

USENIX Security 2023
= Korea University £ SLCLSLAB
College of Informatics cmow Q mA .\ Security Laboratory

Motivation

Open-source software (OSS), a driving force behind innovative software development

* Unmanaged OSS reuse can cause security threats

O Reuse Reuse
Target » A third-party » Other third-party
program OSS component OSS components

(sub-components)

Motivation

Open-source software (OSS), a driving force behind innovative software development

* Unmanaged OSS reuse can cause security threats

? ?

):. 3 | |
% %
Target » A third-party » Other third-party

program OSS component OSS components
(sub-components)

Q1. Do third-party OSS components contain vulnerabilities?

Motivation

Open-source software (OSS), a driving force behind innovative software development

* Unmanaged OSS reuse can cause security threats

?

)" | o o
® E K
Target A third-party Other third-party

program OSS component OSS components
(sub-components)

Q2. Do vulnerabilities in third-party components exist in the target program?

Motivation

Two main approaches for 1-day vulnerability discovery in C/C++ software

(I) Version-based approach

* Detecting vulnerabilities based on
the version information of
reused third-party OSS components

e.g., CENTRIS [ICSE "21], OSSFP [ICSE "23]

|
|
Target C'I::Il]rd-party 1-day
ponents Inerabiliti
program vulnerabilities

and versions

(2) Code-based approach

* ldentifying codes syntactically or
semantically similar to vulnerable code

e.g.,VUDDY [S&P ’17], MVP [SECURITY "20],
MOVERY [SECURITY ’22]

Target
program O £ 'ﬁ‘é \
! — |
Known I 1-day

+t &+ vulnerabilities
vulnerable code I

Challenge

Addressing modified OSS reuse

* Existing version-based approaches for C/C++ software
" Producing false positives

* Unused or resolved vulnerabilities cannot be addressed effectively

— - CVE-2017-8779
ReactOS |—Reuse L:)btl””{’lc « CVE-2018-14621
(v0.1.11) e CVE-2018-14622

* Existing code-based approaches for C/C++ software
" Producing false negatives

* Vulnerabilities in modified code cannot be detected effectively

* Existing version-based approaches for C/C++ software

Challenge

Addressing modified OSS reuse

Producing false positives

Unused or resolved vulnerabilities cannot be addressed effectively

ReactOS

Reuse

>

Libtirpc
(v0.1.11)

{

* Existing code-based approaches for C/C++ software

Producing false negatives

Fixed by
backporting
security patches!

reactos/reactos

[LIBTIRPC] Fix CVE-2018-14622 by backporting its fix
CORE-15005

Vulnerabilities in modified code cannot be detected effectively

V1SCAN: Discovering 1-day Vulnerabilities
in Reused C/C++ Open-source Software Components
Using Code Classification Techniques

Design of V1SCAN

An approach for the precise and comprehensive discovery of 1-day vulnerabilities

* A new way to combine improved version- and code-based approaches

= Key techniques: code classification techniques

Complementing FNs

Improved version- » Improved code-
based approach E based approach

Reused code , , Vulnerable code
P Filtering out FPs e
classification classification

Design of V1SCAN

Improved version-based approach

* Addressing false positives based on the reused code classification technique

[

OSS component

(N\
Exactly Modified
reused .
, functions
functions
_ _J

\

Reused

Target program

Original OSS codebase

4)
Exactly Modified
reused .
, functions
functions
_)

Unused
: functions :

Design of V1SCAN

Improved version-based approach

Vulnerability detection

2
x e.g., Common Platform
Enumeration (CPE) of NVD .
Third-party > Candidate

OSS components vulnerabilities

and versions

Known Affected Software Configurations switch tocre 2.2

Configuration 1 (hide)

Example CPE for CVE-2014-0160

Design of V1SCAN

Improved version-based approach

* Filtering FPs ([func) :a vulnerable function of a detected vulnerability)

" [_func J is exactly reused in the target program

* True vulnerability (no filtering is applied)

OSS codebase
(\ :
Exactly : :
reused :
functions
_ y, ereerern. :

Design of V1SCAN

Improved version-based approach

* Filtering FPs ([func) :a vulnerable function of a detected vulnerability)

func

is not used in the target program

«* Filtering out (func] (i.e., false alarm)

OSS codebase
A nnssrrrsesssnnns
(A func
: Unused
= functions
. J = :

* Filtering FPs (

func

“»*Compare

Design of V1SCAN

Improved version-based approach

func) : a vulnerable function of a detected vulnerability)

is reused with code changes

func

func | to the vulnerable and patched functions of the vulnerability

is more similar with the patched function — Filtering out

OSS codebase

- N — _.
Modified
functions |:

\. J S .

func

(e.g., backporting)

Design of V1SCAN

Improved code-based approach

* Addressing false negatives based on the vulnerable code classification technique

Concerns of existing
code-based approaches

v
'o. Function || Structure
Security Macro (Global)
patch Variable

Over 97% of the code repaired by security patches)
was included in one of the four locations

Design of V1SCAN

Improved code-based approach

 Signature generation

1//1libgcrypt/cipher/cipher-gcm.c
2.,
3+ #ifdef HAVE_GCC_ATTRIBUTE_ALIGNED

4+ # define ATTR_ALIGNED_64 __attribute__ ((aligned (64)))
5...

6 - static const ul6 gcmR[256] = {

7 - 0x0000, 0x01c2, 0x0384, 0x0246, 0x0708, 0x06ca, 0x048c,
8...

9+ static struct {

10+ volatile u32 counter_head;

11 ...

12 void prefetch_table(const void *tab, size_t len) {

13 ...

14 - for (i = 0; i < len; i += 8 *x 32)

15+ for (i = 0; len - 1 >= 8 * 32; i += 8 * 32)

W B W N -

[e BN |

MACRO
+ #ifdef HAVE_GCC_ATTRIBUTE_ALIGNED

+ # define ATTR_ALIGNED_64 __attribute__ ((aligned (64)))

VARIABLE
- static const ul6é gcmR[256] = {
- 0x0000, 0x01c2, 0x0384, 0x0246, 0x0708, 0x06ca, 0x048c,

STRUCTURE (HASH: 3A5F116800...)
+ static struct {
+ volatile u32 counter_head;

FUNCTION (HASH: BBC0994BS8S8...)
—~for (i =0; i < len; i += 8 * 32)
+for (i = 0; len - i >= 8 * 32; i += 8 *x 32)

Security patch
(e.g., CVE-2019-12904)

Vulnerability signature

Design of V1SCAN

Improved code-based approach

* Vulnerability detection: macro and variable

If the two conditions are satisfied, we conclude that |-day vulnerabilities exist

All code lines deleted in the patch

Target program

All code lines added in the patch

Design of V1SCAN

Improved code-based approach

* Vulnerability detection: function and structure

We first verify whether a function (or structure) similar to the vulnerable function exist

If the two conditions are satisfied, we conclude that |-day vulnerabilities exist

4)
Similar function (structure)
All code lines
deleted in the patch
\. Y,

Target program

All code lines added in the patch

Evaluation

Dataset

* CVE dataset (collected from NVD)

" Vulnerable codes from 4,62 C/C++ security patches

**Functions, structures, macros, and variables

Table 4: Target software overview.

|IDX‘ Name ‘Version |#CVE%|#OSS|#CIC++ Line|#Star§|

Domain

* CPEs from all CVEs (as of August 2022) %
* Target software dataset Eg

= Collected from GitHub 59

S10

Turicreate
ReactOS
TizenRT
Aseprite
FreeBSD

MongoDB
MAME
Filament

Godot

ArangoDB

v6.4.1
v0.4.13
3.0_GBM
v1.2.25
v12.2.0
r4.2.11
0228

v1.9.9
v3.2.2
v3.6.12

69
67
62
53
30
28
24
16
16
15

28
23
22
12
47
13
26
16
21
22

4,091413
6,419,855
2,156,848
846,500
14,489,534
2,822,534
4,541,014
1,295,918
1,298,228
5,465,881

10.7K
10.8K
439
17K
6.4K
21.5K
5.8K
13.8K
48.1K
12.2K

Machine learning
Operating system
Operating system
Animation tool
Operating system
Database
Emulator
Rendering engine
Game engine
Database

|T0tall

| 380 | 230 [43427,725] 147K |

" Popular, containing many OSS components

T: #CVEs discovered by the version-based approach, §: #Stargazers.

Evaluation

Accu racy measurement

* Comparison targets: VOFinder [Security '21] and MOVERY [Security "22]

= VI1SCAN outperformed existing approaches

“*Discovered 50% more |-day vulnerabilities than MOVERY

Target CVEs* V1SCAN MOVERY VOFinder
program #4TP | #FP | #FN | PT | RE | #TP | #FP | #4FN | P R || #TP | #FP | #FN | P R
Turicreate 36 32 1 4 [097] 08 [[22 5 14 [081 [o061 [[22 2 14 | 092 [061
ReactOS 29 26 | 3 | 096 | 090 || 24 3 s | 089 | 083 || 18 4 11 | 082 | 062
FreeBSD 23 19 2 4 | 090 | 083 || 13 4 10 | 076 | 057 || 12 7 11 | 063 | 052
MongoDB 14 14 0 0 | 1.00 | 1.00 4 0 10 | 1.00 | 0.29 4 0 10 | 1.00 | 0.29
Filament 14 14 0 0 | 1.00 | .00 || 10 0 4 | 100 | 0.71 4 0 10 | 1.00 | 0.29
TizenRT 10 9 0 1 | 1.00 | 0.90 4 1 6 | 080 | 040 3 | 7 | 075 | 030
Aseprite 8 8 0 0 | 1.00 | 1.00 6 0 2 | 100 | 075 1 1 7 | 050 | 0.13
MAME 8 7 2 1 | 078 | 0.88 6 1 > | 086 | 075 2 | 6 | 067 | 025
Godot 4 4 0 0 | 1.00 | 1.00 1 3 3 | 025 | 025 1 2 3 | 033 | 025
ArangoDB 4 4 0 0 | 1.00 | 1.00 0 0 4 | N/A | 0.00 0 | 4 | 000 | 000
Total 150 B 137] 6 | 13 09 | 091 f 90 17 60 | 084 | 060 || 67 19 83 | 0.78 | 0.45

CVEs™: Total number of TPs detected by V1SCAN, MOVERY, and VOFinder, P': Precision, R*: TP detection rate.

Evaluation

Effectiveness

* Comparison targets: CENTRIS [ICSE "21] (version-based) and VUDDY [S&P ’17] (code-based)

» VI1SCAN reduced false positive ratio of the version-based approach from 77% to 4%

» VI1SCAN reduced false negative ratio of the code-based approach from 49% to 9%

|
0.8 777%

0.6

38%
0.4

0.2 49

0

49%
32%

.9%

False positive ratio

False negative ratio

" Version-based
Code-based

@ VISCAN

20

Conclusion

Conclusion

* |-day vulnerabilities have various propagation patterns

» E.g., propagate with code modifications or resolved after propagation

* VISCAN

* An effective approach for discovering |-day vulnerabilities in third-party OSS components

= VISCAN significantly outperformed existing approaches
“*High vulnerability detection accuracy: 96% precision and 91% recall

* Equipped with vulnerability discovery results fromV1SCAN

" Developers can address threats caused by propagated vulnerabilities in OSS components
21

	기본 구역
	슬라이드 0: V1SCAN: Discovering 1-day Vulnerabilities in Reused C/C++ Open-source Software Components Using Code Classification Techniques
	슬라이드 1: Motivation
	슬라이드 2: Motivation
	슬라이드 3: Motivation
	슬라이드 4
	슬라이드 5
	슬라이드 6
	슬라이드 7
	슬라이드 8
	슬라이드 9
	슬라이드 10
	슬라이드 11
	슬라이드 12
	슬라이드 13
	슬라이드 14
	슬라이드 15
	슬라이드 16
	슬라이드 17
	슬라이드 18
	슬라이드 19
	슬라이드 20
	슬라이드 21

